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1 Introduction

Three dimensional Chern-Simons theory is a topological field theory whose only known

observables are Wilson loop operators, which are supported on knots and links in the three

manifold. Chern-Simons theory coupled to matter — which describes a wealth of physical

phenomena — has a much richer set of observables, that can be used to characterize the

physical properties of the system.
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In this paper we construct a novel class of operators in Chern-Simons theories coupled

to matter. We do this in the N = 6 supersymmetric Chern-Simons theory of Aharony,

Bergman, Jafferis and Maldacena [1], yet our construction generalizes to any Chern-Simons

theory coupled to matter fields, and may find interesting applications elsewhere, and serve

as order parameters for new phases in three dimensional theories.

The operators we construct — which we will denote by VC — are supported on a curve

C in the three dimensional manifold in which the Chern-Simons-matter theory is defined,

and are therefore loop operators. Unlike the more familiar Wilson loop operators, VC are

disorder loop operators, defined by a path integral with certain singularities for the fields

of the theory along the loop C.

These operators are characterized by a vortex-like singularity for the Chern-Simons-

matter fields near the location of the loop C. Since a vortex in a Chern-Simons-matter

theory describes a particle with arbitrary statistics, the insertion of a loop operator VC
has the effect of creating a probe anyon with a worldline specified by the curve C, with

which the theory is probed. They can also be viewed as singular limits of solitonic vortex

solutions that exist in some Chern-Simons theories coupled to matter [2–4].

We present a family of loop operators VC in the U(N)k × U(N)−k N = 6 Chern-

Simons theory of [1] which preserve 1/2, 1/3 or 1/6 of the twenty-four supercharges of the

vacuum. All these operators will have singularities for some of the gauge fields and some

of the scalar fields along the curve C. These operators are labeled by certain parameters

which specify the possible supersymmetric, codimension two singularities allowed in the

theory. This data is rather rich, giving a high dimensional moduli space. The one-half BPS

codimension two singularities we find are reminiscent of the ones corresponding to disorder

surface operators in N = 4 SYM [5] (see also [6]), whose data parametrizes the moduli

space of solutions of the Hitchin equations in the presence of codimension two singularities.

In the second part of the paper, we provide the explicit bulk description of these novel

loop operators in N = 6 Chern-Simons theory by identifying them with excitations of

M-theory in AdS4 × S7/Zk, providing strong evidence for the proposal in [1] that N = 6

Chern-Simons theory is the holographic description of M-theory with AdS4×S7/Zk bound-

ary conditions.

We identify the loop operators VC in N = 6 Chern-Simons theory with configurations

of M2-branes in AdS4×S7/Zk ending on the boundary of AdS4 along a curve C, the singular

locus of the loop operators. For all these solutions we find an explicit map between the

data characterizing the loop operators in the gauge theory and the data characterizing the

M2-brane configuration in AdS4 × S7/Zk. We further show that a class of asymptotically

AdS4 × S7 solutions constructed by Lunin [7] can be appropriately orbifolded to yield the

backreacted description of our M2-brane configurations. These non-singular asymptotically

AdS4 × S7/Zk “bubbling” solutions of eleven dimensional supergravity provide the purely

gravitational description of our 1/2 loop operators VC .

At weak ’t Hooft coupling we compute — in the semiclassical approximation — the

expectation value of a loop operator VC , the correlator of VC with a chiral primary operator

as well as as the correlator of VC with the stress tensor of N = 6 Chern-Simons theory.

Using the M2-brane description of loop operators, we compute using bulk supergravity

– 2 –
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methods the loop operator expectation value and the correlator of a loop operator with a

chiral primary operator in the strong coupling regime. The remarkable agreement found

in the case of N = 4 SYM between the semiclassical gauge theory computation and the

bulk strong coupling computation for the corresponding correlators of surface operators [8]

does not hold in this case.

The loop operators constructed in this paper together with the Wilson loop operators

constructed in [9–11] (and foretold already in [12]) provide a rich set of non-local observables

in N = 6 Chern-Simons theory, which can be used to study the phase structure of these

Chern-Simons-matter theories.

The plan of the rest of the paper is as follows. In section 2 we classify and explic-

itly construct 1/2, 1/3 and 1/6 BPS loop operators in N = 6 Chern-Simons theory with

Abelian and non-Abelian gauge groups. These operators are constructed in terms of codi-

mension two singularities of the theory on R
3 as well as vacua of the theory on AdS2 ×S1.

We then calculate in the leading semiclassical approximation the expectation value of VC
and the correlator of VC with a chiral primary operator and the stress tensor. Section

3 contains the bulk gravitational description of the loop operators studied in section 2.

We identify the M2-brane configuration in AdS4 × S7/Zk corresponding to VC as well as

the “bubbling” supergravity solution description of VC . We also calculate using our probe

M2-brane description the expectation value of VC as well as the correlator of VC with a

chiral primary operator. A discussion and summary of our results can be found in section

4. Some technical details and computations are relegated to appendices.

2 Vortex loop operators in N = 6 Chern-Simons theory

In this section we construct supersymmetric disorder loop operators in N = 6 supersym-

metric Chern-Simons theory. These operators are supported on a curve C in spacetime,

and will be denoted by VC . Physically, a disorder loop operator VC inserts into the sys-

tem an external particle, with which the theory can be probed. As we shall see, the field

configuration near VC is that of a vortex, and since a particle described by a vortex in

Chern-Simons theory coupled to matter can acquire any statistics, the particle inserted by

VC is an anyon.

The disorder loop operator VC in a three dimensional field theory in R
3 is constructed

by specifying a singularity for the fields in the theory near the curve C in spacetime. The

only restriction is that the singular field configuration solves the equations of motion of the

theory in R
1,2\C. The problem of constructing disorder loop operators gets mapped to the

problem of classifying the codimension two singularities for the fields in the theory1 in R
3.

N = 6 supersymmetric Chern-Simons theory has U(N)×U(N) gauge symmetry2 and

the bosonic fields are a pair of gauge fields A and Â and four complex scalar fields CI =

1We write R
3 even-though the calculation is this section (apart for Subsections 2.1.1 and 2.1.2) is done

in Lorentzian signature. The M-theory dual in section 3 is described with Euclidean signature, apart for

the supersymmetry calculation in appendix D.
2For gauge group SU(2) × SU(2) it is equivalent to Bagger-Lambert-Gustavsson theory [13, 14] where

vortex solutions were also recently found [15].
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(C1, C2, C3, C4) transforming in the bifundamental representation of the gauge group. The

Lagrangian for these fields is given by3

L =
k

4π
εµνλTr

(

Aµ∂νAλ +
2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)

−kTrDµC
†
ID

µCI − Vpot ,

(2.1)

where

DµC
I = ∂µC

I − iAµ C
I + iCIÂµ (2.2)

and Vpot denotes a sextic scalar potential, whose explicit form can be found in [1, 16].

The theory depends on the integer k, which determines the level of the Chern-Simons

interactions. For k ≫ 1, the theory has a weakly coupled expansion controlled by 1/k.

One can further define an ’t Hooft limit, where N → ∞, k → ∞ with λ = N/k kept fixed.

The equations of motion for the gauge fields with bosonic sources are

1

4π
εµνλFµν = iDλCIC†

I − iCIDλC†
I

1

4π
εµνλF̂µν = iC†

ID
λCI − iDλC†

IC
I ,

(2.3)

where

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] F̂µν = ∂µÂν − ∂νÂµ + i[Âµ, Âν ] . (2.4)

Disorder loop operators in this theory are characterized by the allowed codimension two

singularities for A, Â and CI .

In this paper we are interested in supersymmetric loop operators, which greatly sim-

plifies the analysis. The Chern-Simons theory in [1] is invariant under N = 6 Poincaré

supersymmetries, which we parametrize by three dimensional spinors ǫIJ = −ǫJI , where

I, J = 1, · · · , 4. A disorder loop operator is supersymmetric when the supersymmetry

variation of all the fields vanishes in the background it creates. The supersymmetry varia-

tion of the bosonic fields is automatically zero, so we need to examine the supersymmetry

variation of the fermions, which is given by [17–19]

δψI = −γµǫIJDµC
J + 2π

(

−ǫIJ(CKC†
KC

J − CJC†
KC

K) + 2ǫKLC
KC†

IC
L
)

. (2.5)

These equations must be supplemented with the equations of motion for the gauge

fields (2.3).

The theory in [1] is also invariant under N = 6 conformal supersymmetries, which

are parametrized by three dimensional spinors ηIJ = −ηJI , where I, J = 1, · · · , 4. A

loop operator invariant under conformal supersymmetries is described by a bosonic field

configuration with vanishing [19]

δψI = −γµγνxνηIJDµC
J + 2πγνxν

(

−ηIJ(CKC†
KC

J − CJC†
KC

K) + 2ηKLC
KC†

IC
L
)

−ηIJCJ . (2.6)

Altogether, the N = 6 Chern-Simons theory in [1] is invariant under the OSp(6|4) super-

group. We will now construct families of supersymmetric loop operators that are invariant

under various subgroups of OSp(6|4).
3We have rescaled the matter fields such that k appears as an overall factor in the Lagrangian.
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2.1 Loop operators in the U(1) × U(1) theory

We start by describing the operator VC corresponding to inserting a static particle in the

theory with U(1) × U(1) gauge group. For a static particle the curve C is a straight line

C = R ⊂ R
3. We choose coordinates (t, z, z̄) such that the line is defined by z = 0 and

parametrized by t. The straight line — together with the circle — are the two maximally

symmetric curves in R
3. They are both invariant under an SU(1, 1) × U(1)l subgroup of

the three dimensional conformal group SO(2, 3).

Once the singularity for the straight line is understood, one can then construct the

loop operator VC for an arbitrary curve C ⊂ R
3, by treating (z, z̄) as local coordinates in

the normal bundle of C. For a curve C other than R or S1, the SU(1, 1)×U(1)l symmetry

is broken.

1/2 BPS loop operators

A maximally supersymmetric loop operator in N = 6 Chern-Simons theory is obtained

by allowing a single complex scalar field to acquire a singularity near the curve C. Excit-

ing multiple scalar fields preserves less supersymmetry.4 Therefore, we first consider the

following codimension two scalar field singularity5

C1 = f(z, z̄) , (2.7)

f(z, z̄) is an arbitrary function that develops a singularity at z = 0, the location of the

operator VC . The choice of a complex scalar field breaks the SU(4) R-symmetry of the

theory down to SU(3) × U(1)R.

The operator VC is supersymmetric if the field configuration produced by VC gives a

vanishing supersymmetry variation for the Fermi fields (2.5). It is convenient to decompose

the supersymmetries according to their helicity in the z-plane, so that ǫIJ = ǫ+IJ+ǫ−IJ , where

the helicity components satisfy

γzǫ+IJ = 0 γz̄ǫ−IJ = 0 . (2.8)

Moreover, the spinors satisfy a reality condition, where complex conjugation raises their

indices. In our basis it also flips their helicity

(ǫ∓IJ)
∗ = ǫIJ± =

1

2
ǫIJKLǫ±KL . (2.9)

In the Abelian theory only the first term in (2.5) is non-vanishing. Imposing that

VC leaves invariant the three supercharges parametrized by ǫ+1I gives rise to the following

BPS equations

Dz̄C
1 = 0 DtC

1 = 0 . (2.10)

4Unless all scalar fields are proportional to each other, in which case they preserve the same supersym-

metry as the case of a single scalar.
5We focus on static configurations in this paper and do not consider any possible time dependence for

the fields.
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The BPS equations restrict the other three scalar fields C2, C3 and C4 to be (covari-

antly) constant.

Due to equation (2.9), any solution of these BPS equations is automatically also in-

variant under three more supersymmetry variations with parameters ǫ1JKLǫ−KL, yielding a

configuration invariant under six real Poincaré supercharges. Therefore, solutions to (2.10)

preserve one-half of the Poincaré supersymmetries. Explicitly, they are invariant under the

supersymmetry transformations labeled by

{

ǫ+12 , ǫ
+
13 , ǫ

+
14 , ǫ

−
23 , ǫ

−
24 , ǫ

−
34

}

. (2.11)

The BPS equations (2.10) must be supplemented with the equations of motion for the

gauge fields. In the Abelian theory, the matter fields couple only to a linear combination

of the gauge fields through

DµC
I = ∂µC

I − iA−
µ C

I , (2.12)

where

A+ = A+ Â A− = A− Â . (2.13)

The other gauge field, A+, appears in the action only in a Chern-Simons term. The

equations of motion for the gauge fields (2.3) are now

1

8π
εµνλF+

µν = iDλCIC†
I − iCIDλC†

I

εµνλF−
µν = 0 .

(2.14)

The static solutions of the BPS equations (2.10) are given by

C1 = f(z) A− = 0 , (2.15)

where f(z) is an arbitrary holomorphic function that develops a singularity at z = 0. This

scalar field singularity (2.15) together with the equation of motion for A+ (2.14) requires

that we turn on an electric field

F+
tz = 4πf ′(z)f̄(z̄) , (2.16)

so we may take

A+
t = −4π|f |2 . (2.17)

Note though, that the equations of motion do not restrict the holomorphic component of

the A+ gauge field, allowing it to take the general form

A+
z = g(z) , (2.18)

where g(z) is an arbitrary holomorphic function that develops a singularity at z = 0 and

the antiholomorphic component is its complex conjugate A+
z̄ = Ā+

z . Therefore, the most

general loop operator VC preserving one-half of the twelve Poincaré supersymmetries in

N = 6 Chern-Simons theory is labeled by a pair of holomorphic functions — f(z) and g(z)

— which are singular at z = 0.

– 6 –



J
H
E
P
0
3
(
2
0
0
9
)
0
0
4

The straight line is invariant under scale transformations, which raises the possibility

that the disorder operator VC be also scale invariant. Using the fact that the scalar field and

gauge field have scaling dimension 1/2 and 1 respectively, requiring conformal invariance

fixes the strength of the singularity characterizing VC (2.15), (2.18) to be6

C1 =
β√
z

A+
z = −i α

2kz
. (2.19)

Therefore, this operator is labeled by two parameters (α, β). β is a positive real number,

as the phase of C1 can be eliminated by a U(1) gauge transformation. Likewise, the

imaginary part of α, which corresponds to a radial gauge field, can be removed, so α is also

real, and gives the holonomy around the vortex. Since the theory is invariant under large

gauge transformations, α is an angular variable. The allowed large gauge transformations

depend on the level k, so that with the factor of 2k in the denominator of (2.19), α has

unit period [1].

We note from (2.19) that the scalar field C1 is not single-valued, as it changes sign

upon encircling VC . Such discontinuities may seem puzzling at first, but they are rather

ubiquitous in theories with disorder operators, such as the discontinuity induced on a scalar

field by a Z2 twist field in two dimensional conformal field theory. This discontinuity is

consistent as long as the correlation functions of physical operators are well defined. As we

shall explain more fully in section 2.4, this discontinuity does not lead to any pathologies for

even k. The situation for odd k is more complicated, as in this case there are gauge invariant

operators in N = 6 Chern-Simons theory that are not single valued when encircling VC ,

which would lead one to conclude that the vortex loop operators are unphysical for odd k.

As we explain in section 2.2, in the non-Abelian theory it is possible to have vortices also

for odd k.

With the specific form of the singularity (2.19), the bosonic symmetry preserved by

VC is SU(1, 1)×U(1)d×SU(3), where U(1)d is a diagonal combination of a space-time and

R-symmetry.7 Furthermore, invariance under supersymmetry and conformal symmetry

implies that the operators VC preserve one-half of the twelve conformal supersymmetries

of the theory. Therefore the singularity (2.19) is invariant under the six superconformal

transformations with parameters

{

η+
12 , η

+
13 , η

+
14 , η

−
23 , η

−
24 , η

−
34

}

. (2.20)

This is verified directly in appendix A using the conformal supersymmetry transforma-

tions (2.6).

Thus, we have constructed 1/2 BPS loop operators VC for the theory with gauge group

U(1) × U(1). They are described by the singularity (2.19), and are invariant under an

SU(1, 1|3) subgroup of the OSp(6|4) symmetry of the theory. The 1/2 BPS loop operators

VC are labeled by two real parameters (α, β).

6It also imposes C2 = C3 = C4 = 0.
7It is the diagonal sum of U(1)l ⊂ SO(2, 3) and U(1)R ⊂ SU(4).
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1/3 BPS loop operators

Other interesting operators VC preserving less than one-half of the Poincaré supersymme-

tries can be constructed by exciting more than a single scalar field.

Imposing that the operator VC leaves invariant the two supersymmetry transfomations

with parameters ǫ+13 and ǫ+14 gives rise to the following BPS equations8

Dz̄C
1 = DzC

2 = 0 DtC
1 = DtC

2 = 0 . (2.21)

Due to equation (2.9), any solution of the BPS equations is automatically also invariant

under two more supersymmetry transformations labeled by ǫ−23 and ǫ−24, yielding a con-

figuration invariant under four real Poincaré supercharges. Therefore, solutions to (2.21)

preserve one-third of the Poincaré supersymmetries. Explicitly, they are parametrized by

{

ǫ+13 , ǫ
+
14 , ǫ

−
23 , ǫ

−
24

}

. (2.22)

As before, we should also solve the equations of motion for the gauge fields (2.3).

The static solutions of the BPS equations (2.21) are given by

C1 = f1(z) C2 = f2(z̄) A+
z = g(z) A− = 0 , (2.23)

where f1(z) and g(z) are arbitrary holomorphic functions and f2(z̄) is an antiholomorphic

function all of which have singularities at z = 0. An electric field for A+ must also be

turned on, which can be represented by the gauge potential

A+
t = −4π

(

|f1|2 − |f2|2
)

. (2.24)

If we further demand that the singularity produced by VC is scale invariant, then the

form of the singularity is fixed to be

C1 =
β1√
z

C2 =
β2√
z̄

A+
z = −i α

2kz
. (2.25)

Only the relative phase of the two complex parameters β1 and β2 is physical, as a U(1)

gauge transformation leads to the identification (β1, β2) ≃ eiθ(β1, β2). Therefore, these

operators are labeled by (α, β1, β2)/U(1), where the U(1) acts by shifting the phase of β1,

β2 and leaves α invariant.

The bosonic symmetry preserved by these operators is SU(1, 1)×SU(2)×U(1)d′ , where

U(1)d′ is a diagonal combination of a space-time and R-symmetry.9 The singularity (2.25)

preserves one-third of the conformal supersymmetries. From equation (2.6) it follows that

the singularity (2.25) is invariant under the four conformal supercharges labeled by

{

η+
13 , η

+
14 , η

−
23 , η

−
24

}

. (2.26)

8The supersymmetry conditions allow the scalars C3 and C4 to be arbitrary constants, but we will set

them to zero, which is also the only conformally invariant constant.
9It is the diagonal sum of U(1)l ⊂ SO(2, 3) and a U(1)R′ ⊂ SU(4) under which C1 and C2 have charges

(+1,−1) respectively.
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Thus, we have constructed 1/3 BPS loop operators VC , described by the singularity (2.25),

which are invariant under an SU(1, 1|2) subgroup of the OSp(6|4) symmetry of the theory.

The 1/3 BPS loop operators VC when the gauge group is U(1) × U(1) are labeled by

(α, β1, β2)/U(1).

Our discussion throughout this paper is for the theory with general k, but we would

like to point out that for k = 1, 2 the theory is expected to have enhanced supersymmetry

— N = 8 — with a total of thirty-two real supercharges instead of twenty-four [1]. The

1/2 BPS vortex loop operators remain 1/2 BPS also for k = 1 and 2, preserving sixteen of

the thirty-two supercharges (i.e. four out of the eight extra supercharges). In the Abelian

theory, we expect the 1/3 BPS vortex loop operators, which preserve eight supercharges,

to be invariant under all the extra eight supercharges that exist for k = 1, 2, and to

become 1/2 BPS. This can be motivated by the fact that with N = 8 supersymmetry

the holomorphic and anti-holomorphic fields CI and C†
I are in the same multiplet of the

SO(8) R-symmetry group. The 1/3 BPS scale invariant loop operator (2.25) is such that

the anti-holomorphic field

C†
2 =

β̄2√
z
∝ C1 . (2.27)

With the extra R-symmetry generators the field C†
2 can be rotated then into C1 and we

end up with the same configuration as the 1/2 BPS operator.

As we point out below, in the non-Abelian theory there will be cases when the 1/3 BPS

vortex loop operators will have enhanced supersymmetry for k = 1, 2 (when all the vortices

are proportional to each-other), and other cases when they do not and they preserve only

eight supercharges, which is 1/4 of the total thirty-two.

1/6 BPS loop operators

Imposing that the operator VC leaves invariant only one of the chiral Poincaré supersym-

metry transformations — that with label ǫ+12 (and by equation (2.9) also the anti-chiral

one ǫ−34) gives rise to the following BPS equations

Dz̄C
1 = Dz̄C

2 = DzC
3 = DzC

4 = 0 , DtC
1 = DtC

2 = DtC
3 = DtC

4 = 0 . (2.28)

The static solutions of these equations are characterized by three holomorphic functions

f1(z), f2(z), g(z) and two antiholomorphic ones f3(z̄), f4(z̄) all with singularities at z = 0

C1 = f1(z) C2 = f2(z) C3 = f3(z̄) C4 = f4(z̄) A+
z = g(z) A− = 0 .

(2.29)

Moreover, by the equation of motion for the gauge fields (2.3), an electric field for A+ must

be turned on

A+
t = −4π

(

|f1|2 + |f2|2 − |f3|2 − |f4|2
)

. (2.30)

If we further demand that the singularity produced by VC is scale invariant, which

means it will also preserve the superconformal transformations labeled by η+
12 and η−34,

then the form of the singularity is fixed to be

C1 =
β1√
z

C2 =
β2√
z

C3 =
β3√
z̄

C4 =
β4√
z̄

A+
z = −i α

2kz
. (2.31)
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The bosonic symmetries preserved by the 1/6 BPS operators are SU(1, 1) × U(1)d̂, where

U(1)d̂ is a diagonal combination of a space-time and R-symmetry.10

In the Abelian theory, however, the singularity given by (2.31) has enhanced symmetry,

as C1 and C2 are proportional to each-other, as are C3 and C4. Therefore (2.31) can be

transformed into (2.25) by an SU(4) transformation and is thus 1/3 BPS. But as we shall

see in the analysis for the U(N)×U(N) theory, in that case it is possible to take C1 /∝ C2 and

C3 /∝ C4 and the operators are genuinely 1/6 BPS, and are invariant under an SU(1, 1|1)
subgroup of the OSp(6|4) symmetry of the theory.

2.1.1 Circular loop operators

The codimension two singularities we have found as solutions to the BPS equations for

the case when the loop operator VC is supported on a line C = R ⊂ R
3 can be used to

construct supersymmetric loop operators VC supported on an arbitrary curve C ⊂ R
3.

Such a loop operator will be described locally by singularities similar to those we have

found for the straight line, but where now the coordinates (z, z̄) are interpreted as local

coordinates on the normal bundle of C. In this paper we focus on supersymmetric loop

operators preserving some conformal symmetries.

The only curves in R
3, other than straight lines, invariant under conformal transfor-

mations are circles. Therefore there exist supersymmetric loop operators VC supported

on a circle C = S1 ⊂ R
3 which preserve the same superalgebra as the loop operator VC

supported on a line C = R ⊂ R3. Since an S1 is related by a global conformal transfor-

mation to the line R, the two curves are SU(1, 1) × U(1) invariant. The operator VC for

C = S1 also preserves the same number of supercharges as the corresponding operator

for the straight line, but in the case of the circle, it is not invariant separately under the

Poincaré and conformal supercharges, rather under linear combinations of the two.

To construct VS1 explicitly, we consider an S1 ⊂ R
3 of radius a located at t = 0, |z|2 =

a2 in the coordinate system

ds2 = dt2 + dr2 + r2 dψ2 , (2.32)

then the singularities produced for the scale invariant 1/2, 1/3 and 1/6 BPS circular loop

operators can be obtained from the singularities of the corresponding BPS line operators

(2.19), (2.25), (2.31) by making the following replacement11

z → r̃eiφ z̄ → r̃e−iφ, (2.33)

where

r̃2 =
(r2 + t2 − a2)2 + 4a2t2

4a2
(2.34)

is the conformal invariant distance from the circle and φ is the angular coordinate defined by

sinφ =
t

r̃
. (2.35)

10It is the diagonal sum of U(1)l ⊂ SO(2, 3) and a U(1)R̂ ⊂ SU(4) under which CI have charges

(1, 1,−1,−1).
11This is most easily derived by a Weyl transformation from R

3 to AdS2 × S1, which we discuss below,

see (2.44).

– 10 –



J
H
E
P
0
3
(
2
0
0
9
)
0
0
4

2.1.2 Loop operators as vacua of N = 6 Chern-Simons theory on AdS2 × S1

An alternative way to study loop operators VC for C = R and C = S1 is to study the gauge

theory on AdS2 ×S1 instead of R
3. The analysis in AdS2 ×S1 has the advantage that the

symmetries of the scale invariant operators are realized as isometries of AdS2×S1, and not

as conformal symmetries. When the gauge theory is studied in AdS2 ×S1, the symmetries

of VC are made manifest.

The only modification to the bosonic Lagrangian of the theory (2.1) beyond replacing

the flat metric by the AdS2×S1 metric is the addition of a conformal coupling for the scalars

Lconf = −k R
(3)

8
TrC†

IC
I , (2.36)

where R(3) is the scalar curvature of the background metric, which for unit-radius

AdS2 × S1 is R(3) = −2.

In this formulation, loop operators VC are given by SU(1, 1) invariant vacua of the

theory. The equation that needs to be solved for each scalar is12

DφC
I ∓ i

2
CI = 0 =⇒ CI = βI e

± i
2
φ , (2.37)

where φ is the coordinate parametrizing the S1 in AdS2 × S1 and βI are constants. The

choice of sign in the phase is related to the choice of a holomorphic or antiholomorphic

field in R
3. Similarly to the analysis in R

3, the equation of motion for the gauge field forces

that we turn on an electric field proportional to the volume form of AdS2

F+ ∝ ΩAdS2 . (2.38)

As in the flat-space formulation, the equations of motion allow us to turn on an extra

gauge field

A+
φ =

α

k
. (2.39)

In the AdS2×S1 formulation, the operator VC is supported at the conformal boundary

of AdS2 ×S1. For the case of C = R we must consider AdS2 in Poincaré coordinates while

for C = S1 we must consider AdS2 in global coordinates. In this language, loop operators

VC are determined by smooth boundary conditions at asymptotic infinity of AdS2 × S1

instead of as singularities in the interior of R
3.

To see the relation to the vortex loop operators on R
3 we write the metric on R

3 as a

Weyl transformation of the metric on AdS2 × S1

ds2
R3 = ω2ds2AdS2×S1 . (2.40)

The conformal factor in the transformation between the two metrics, ω, will give the scalars

and the gauge field in R
3 the requisite singularity

CI |R3 =
CI |AdS2×S1√

ω
A±|R3 = A±|AdS2×S1 , (2.41)

12Note that there is an alternative formulation of these solutions (also in the flat-space description), where

the phase of CI is absorbed by a singular gauge transformation with A−
φ = ± 1

2
. After this transformation

the scalar fields are single-valued, but there is a non-integer holonomy around the φ circle.
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as CI has Weyl weight one-half and A± (in form notation) has weight zero.

In the case of the line in R
3, it is located at r = 0 in the coordinate system

dsR3 = dt2 + dr2 + r2dφ2 = r2
[

dt2 + dr2

r2
+ dφ2

]

, (2.42)

where [· · · ] is the AdS2 × S1 metric in Poincaré coordinates and ω = r. Combining this

Weyl factor and the AdS2 × S1 vacuum configuration (2.37), we identify z = reiφ and

recover the singularities produced by VC in R
3 for C = R (2.19).

The circle in R
3 is located at r = a and t = 0 in

dsR3 = dt2 + dr2 + r2dψ2 = r̃2
[

dρ2 + sinh2 ρ dψ2 + dφ2
]

(2.43)

where [· · · ] is the AdS2 × S1 metric in global coordinates and ω = r̃, where

r̃2 =
(r2 + t2 − a2)2 + 4a2t2

4a2
=

a2

(cosh ρ− cosφ)2

r = r̃ sinh ρ t = r̃ sinφ .

(2.44)

Combining this Weyl factor and the AdS2 × S1 vacuum configuration (2.37), we get the

singularities produced by VC in R
3 for C = S1 (2.33).

The AdS2×S1 formulation of VC makes manifest that the singularities we constructed

in R
3 are SU(1, 1) invariant, since in this formulation the scalar fields have no dependence

on the AdS2 coordinates and the required electric field is proportional to the AdS2

volume form.

The AdS2×S1 formulation of VC is also useful in finding the bulk, holographic descrip-

tion of these operators in AdS4 × S7/Zk. In section 3 we choose to work in a coordinate

system where the AdS4 metric is foliated by AdS2 × S1 slices, and in this foliation the

boundary N = 6 Chern-Simons theory is defined on AdS2 × S1.

2.2 Loop operators in the U(N) × U(N) theory

We now extend the construction of supersymmetric loop operators VC to the non-Abelian

theory. For simplicity, we will focus on the operators that are scale invariant, that is

operators defined by a scale invariant codimension two singularity. Moreover, we will write

explicitly the singularity for the case when C = R. One can then construct the singularity

when C = S1 by using the transformation (2.33). The corresponding description of the

loop operators when the theory is on AdS2 × S1 proceeds in exactly in the same manner

as in section 2.1.2.

The loop operator VC in the U(N) ×U(N) theory will have a specified singularity for

one or more of the scalar fields along the curve C. This singularity will in general break

the U(N)×U(N) gauge symmetry in the vicinity of the loop operator VC to the subgroup

L = U(N0) × U(N0) × U(N1) × · · · × U(NM ) , (2.45)

where
∑M

l=0Nl = N . Therefore, the first piece of data that must be specified is a collection

of integers (N0, · · · , NM ) that form a partition of N . Note that for the first number —
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N0 — there are two factors of U(N0), while for all the others just one. The reason is that

in this first block none of the scalar fields will get a VEV and the gauge symmetry is not

broken to the diagonal subgroup.

The precise definition of the loop operator VC is as follows. First we specify the

unbroken gauge symmetry as in (2.45) and an L-invariant singularity produced by VC , on

which we elaborate below. Then the operator VC is defined by the path integral over all

smooth field configurations with the same L-invariant singularity near C. In performing

the path integral, one must mod out by the gauge transformations that take values in

L ⊂ U(N) × U(N) when restricted to C.

We now consider the various BPS loop operators in the U(N) × U(N) theory.

1/2 BPS loop operators

In the non-Abelian theory, the BPS equations describing a 1/2 BPS loop operator VC
preserving the supercharges parameterized by (2.11) are still given by

Dz̄C
1 = 0 DtC

1 = 0 , (2.46)

where now

DC1 = dC1 − i(AC1 − C1Â) , (2.47)

and C2, C3 and C4 are constants. These equations must be supplemented with the equa-

tions of motion for the gauge fields (2.3).

Any static solution of this equation can be diagonalized by a U(N) × U(N) transfor-

mation. Focusing on the conformally invariant solutions, C2 = C3 = C4 = 0 and the

singularity of the complex scalar field C1 is then given by

C1 =
1√
z













0 ⊗ 1N0 0 · · · 0

0 β(1) ⊗ 1N1 · · · 0
...

...
. . .

...

0 0 · · · β(M) ⊗ 1NM













. (2.48)

The scalar field acquires a U(N0)
2 ×U(N1)× · · · ×U(NM ) invariant singularity, labeled by

M real positive parameters (β(1), · · · , β(M)), where we have removed the phases of all the

β(l) by perfoming a U(1)M gauge transformation.

As in the U(1) × U(1) theory, we consider solutions to the BPS equations where

A = Â . (2.49)

We can therefore identify the gauge indices of the two gauge groups and define again

A+ = A+ Â (and A− = 0). The first BPS equation, together with (2.48) implies that

[C,A+
z ] = 0 . (2.50)
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Therefore, A+
z is given by an arbitrary diagonal matrix. For a U(N0)

2×U(N1)×· · ·U(NM )

invariant singularity, the diagonal gauge field produced by VC takes the following form

A+
z = − i

2kz













0 ⊗ 1N0 0 · · · 0

0 α(1) ⊗ 1N1 · · · 0
...

...
. . .

...

0 0 · · · α(M) ⊗ 1NM













. (2.51)

The parameters αl are defined with unit period. The equation of motion for the gauge

fields requires that we turn on an electric field for the A+ gauge field, which in complete

analogy with the Abelian case can be represented by the vector potential

A+
t = −4πC1C†

1 . (2.52)

In summary, a 1/2 BPS loop operator VC with L = U(N0)
2 × U(N1) × · · ·U(NM ) is

labeled by 2M parameters (α(l), β(l)), where l = 1, · · · ,M .

1/3 BPS loop operators

In the non-Abelian theory, the BPS equations describing the 1/3 BPS loop operators VC
preserving the supercharges parametrized by (2.22) are given by

Dz̄C
1 = DzC

2 = 0, DtC
1 = DtC

2 = 0, C1C†
1C2 = C2C

†
1C

1, C2C†
2C1 = C1C

†
2C

2,

(2.53)

with constant C3 and C4. In addition we have to impose the equations of motion for the

gauge fields (2.3).

As in the 1/2 BPS case, taking the conformally invariant case, C3 = C4 = 0 and we

can diagonalize C1 by a U(N) × U(N) transformation

C1 =
1√
z













0 ⊗ 1N0 0 · · · 0

0 β
(1)
1 ⊗ 1N1 · · · 0

...
...

. . .
...

0 0 · · · β(M)
1 ⊗ 1NM













. (2.54)

The last two equations in (2.53) further imply that the matrix C2 can be simultaneously

diagonalized so the second scalar field develops the following singularity

C2 =
1√
z̄













0 ⊗ 1N0 0 · · · 0

0 β
(1)
2 ⊗ 1N1 · · · 0

...
...

. . .
...

0 0 · · · β(M)
2 ⊗ 1NM













. (2.55)

The singularities arising from the scalars are labeled by 2M complex parameters (β
(l)
1 , β

(l)
2 )

subject to the relation (β
(l)
1 , β

(l)
2 ) ≃ eiθl(β

(l)
1 , β

(l)
2 ) for l = 1, · · ·M , thus resulting in 3M real

parameters.
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The singularity for the gauge field is unmodified from the 1/2 BPS case and is given

by (2.51). As in the Abelian case an electric field for A+ must also be turned on and is

completely determined by C1 and C2

At = −4π
(

C1C†
1 − C2C†

2

)

. (2.56)

We mentioned for the theory with U(1) × U(1) gauge symmetry that in the case of

k = 1, 2, where the theory is expected to have enhanced N = 8 supersymmetry, the

supersymmetry of the 1/3 BPS vortex is enlarged by eight more supercharges to a total of

sixteen, so it becomes 1/2 BPS. Does the same happen for the non-Abelian vortex?

The argument from the U(1) × U(1) theory can be carried over to our discussion

here, only that while there equation (2.27) was automatically satisfied, now it will have

to be imposed as an extra constraint. Therefore the 1/3 BPS vortex will have enhanced

supersymmetry for k = 1, 2 if and only if the parameters β
(l)
1 and β

(l)
2 are such that the

matrices C1 and C†
2 are proportional to each-other.

In summary, a 1/3 BPS loop operator VC with L = U(N0)
2 × U(N1) × · · ·U(NM )

is labeled by 4M real parameters (α(l), β
(l)
1 , β

(l)
2 )/U(1)M , where l = 1, · · · ,M . The ones

that are 1/2 BPS for k = 1, 2 are labeled by 2M + 2 real parameters, (α(l), |β(l)
1 |) and the

constant ratio between C1 and C†
2.

1/6 BPS loop operators

In the non-Abelian theory, the BPS equations describing the 1/6 BPS loop operators VC in-

variant under the supersymmetry transformations with parameters ǫ+12 and ǫ−34 are given by

Dz̄C
1 = Dz̄C

2 = DzC
3 = DzC

4 = 0 , DtC
1 = DtC

2 = DtC
3 = DtC

4 = 0 . (2.57)

The scalars fields CI must also satisfy certain matrix constraints analogous to those

in (2.53), which are solved when all four matrices are diagonal. These equations must be

supplemented with the equations of motion for the gauge fields (2.3).

The solutions to (2.57) preserving conformal invariance are of the form (2.54) for the

scalars C1 and C2 and (2.55) for C3 and C4. Taking the indices (Ĩ , Î) to label C1, C2

and C3, C4 respectively, the singularities induced on the scalar fields by the 1/6 BPS loop

operators VC are given by

C Ĩ =
1√
z













0 ⊗ 1N0 0 · · · 0

0 β
(1)

Ĩ
⊗ 1N1 · · · 0

...
...

. . .
...

0 0 · · · β(M)

Ĩ
⊗ 1NM













(2.58)

and

C Î =
1√
z̄













0 ⊗ 1N0 0 · · · 0

0 β
(1)

Î
⊗ 1N1 · · · 0

...
...

. . .
...

0 0 · · · β(M)

Î
⊗ 1NM













. (2.59)
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The singularities arising from the scalars are labeled by 4M complex parameters β
(l)
I

subject to the relation (β
(l)
I ) ≃ eiθl(β

(l)
I ) for l = 1, · · ·M and I = 1, . . . , 4, thus resulting

in 7M real parameters.

As in the 1/3 BPS case, the singularity for the gauge field is unmodified from the 1/2

BPS case and is given by (2.51). An electric field for A+ must also be excited

At = −4π
(

C1C†
1 + C2C†

2 − C3C†
3 − C4C†

4

)

. (2.60)

In summary, a 1/6 BPS loop operator VC with L = U(N0)
2 × U(N1) × · · ·U(NM ) is

labeled by 8M parameters (α(l), β
(l)
a , β

(l)
a′ )/U(1)M , where l = 1, · · · ,M . Some degenerate

cases will preserve more than four supercharges (for example when M = 1), or have

enhanced supersymmetry when k = 1, 2.

Vortices at odd level k

As mentioned above, in the case of the theory with U(1) × U(1) gauge symmetry, the

vortices are a good gauge theory background only for the theory with even level k. For odd

level there are gauge-invariant local observables which are not single-valued when encircling

these vortices. The same is true for the construction we presented here in the non-Abelian

theory. We would like to comment here about a modification of this construction which

applies also for odd k, inspired by a similar construction for surface operators in N = 4

SYM in four dimensions of Koh and Yamaguchi [20].

For this modification one needs to take all the integers Nl with 1 < l ≤ M to be even

and then break every Nl×Nl block in two. The singularity of the scalar field (2.48) is then

modified such that half of the eigenvalues in each block have the opposite sign

C1 =
1√
z























0 ⊗ 1N0 0 · · · 0

0

(

β(1) 0

0 −β(1)

)

⊗ 1N1/2 · · · 0

...
...

. . .
...

0 0 · · ·
(

β(M) 0

0 −β(M)

)

⊗ 1NM/2























, (2.61)

which can also be written as

C1 =
1√
z













0 ⊗ 1N0 0 · · · 0

0 β(1) σ3 ⊗ 1N1/2 · · · 0
...

...
. . .

...

0 0 · · · β(M) σ3 ⊗ 1NM/2













, (2.62)

with σ3 a Pauli matrix.

So far it seems like a vortex with gauge symmetry broken to L = U(N0)
2×U(N1/2)

2×
· · ·U(NM/2)

2, but the novel feature proposed in [20] is to add a non-trivial gauge twist

around the vortex, which breaks the symmetry to L = U(N0)
2 × U(N1/2) × · · ·U(NM/2).
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Instead of (2.51) we take the holonomy to be

exp i

∮

A+
z dz =













1N0 0 · · · 0

0 eiπα
(1)/k σ1 ⊗ 1N1/2 · · · 0

...
...

. . .
...

0 0 · · · eiπα(M)/k σ1 ⊗ 1NM/2













. (2.63)

Then, when going around the vortex, the Pauli matrices σ1 permute the pairs of eigenvalues

in (2.62), so as opposed to the general case (2.48), this construction is in fact single-valued

around the vortex. Such configurations are perfectly good backgrounds for the gauge theory

also for odd k, even in the presence of operators of the form Ck.

To summarize, for odd k the general 1/2 BPS vortex loop operators has unbroken

gauge symmetry L = U(N0)
2 × U(N1/2) × · · ·U(NM/2) and is labeled by 2M parameters

(α(l), β(l)), where l = 1, · · · ,M . Similar constructions apply also for 1/3 BPS and 1/6 BPS

vortex loops.

2.3 Vacuum expectation value

Conformal invariance implies that the one point function of a local operator must vanish.

This need not be the case for non-local operators, and the expectation value of non-local

operators have played an important role as order parameters of phases of gauge theories.

Our first task will be to compute, in the semiclassical approximation, the expectation

value of the BPS disorder loop operators that we have constructed. This is achieved

by evaluating the classical Euclidean action of N = 6 Chern-Simons theory on the field

configuration produced by the operator VC

〈VC〉 = exp (−Sclass.) . (2.64)

This computation is easily performed by considering the description of a loop oper-

ator as a vacuum state of the theory on AdS2 × S1. The relevant part of the Euclidean

Lagrangian is

L = kTr

(

DµC
†
ID

µCI +
R(3)

8
C†
IC

I

)

, (2.65)

where as mentioned earlier R(3) = −2 for AdS2 × S1. We have not included the Chern-

Simons terms for the gauge fields as they trivially vanish when evaluated on the gauge field

configuration excited by VC . Since CI = CI0e
± i

2
φ, where CI0 is a constant diagonal matrix

made of the parameters β
(l)
I , we have that |DCI |2 = |dCI |2 = 1

4 |CI |2, which cancels the

conformal coupling of the scalars. Therefore the on-shell action vanishes and

〈VC〉 = 1 (2.66)

in the semiclassical approximation. We note that 〈VC〉 = 1 both for C = R and C = S1 as

the vanishing of the on-shell action holds for both Poincaré and global AdS2.

The same conclusion can be reached by evaluating the on-shell action for the singularity

produced by VC in R
3. Care must be taken, however, to ensure that the action has a well
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defined variational principle and that the boundary action vanishes when evaluated on the

singularity.13 This requires adding a boundary term to the action in (2.1), whose net effect

is to cancel the bulk term when evaluated on-shell.

2.4 Correlator with local operators

In this section we calculate various correlators involving the BPS loop operators we found

in the previous section. We calculate the correlator of a BPS loop operator with chiral

primary operators and the stress tensor in N = 6 Chern-Simons theory. See [8] for a

closely related discussion in the context of disorder surface operators in four dimensional

N = 4 SYM.

In the semiclassical approximation, the correlation function of a loop operator VC and

a local operator O in N = 6 Chern-Simons theory in R
3 is found by evaluating the operator

O in the background field that the loop operator produces

〈VC · O〉
〈VC〉

= O|loop . (2.67)

Conformal Ward identities constrain the form of the correlator of VC with a local

operator O. When C = R the dependence of the correlator with a dimension ∆ scalar

operator on the distance r is given by

〈VC · O〉
〈VC〉

=
cO
r∆

. (2.68)

The correlator is captured by the coefficient cO, which depends on the charges of the

operator, the ’t Hooft coupling λ and N . When C = S1 the correlator is given by

〈VC · O〉
〈VC〉

=
cO
r̃∆

, (2.69)

where r̃ is defined in (2.34). In the calculation below we determine the value of cO in the

semiclassical approximation.

We now proceed to compute — in the semiclassical approximation — the correlator

between a 1/2 BPS loop operator VC and the simplest chiral primary operators in N = 6

Chern-Simons theory. The operators we consider here, OA
∆ of conformal dimension ∆,

transform in the [∆, 0,∆] representation of the SU(4) R-symmetry group [1].14 The ex-

pression for the unit normalized chiral primary operators in the planar approximation is

given by

OA
∆ =

(4π)∆

λ∆
√

∆
C(A)J1···J∆

I1···I∆
Tr
(

CI1C†
J1

· · ·CI∆C†
J∆

)

, (2.70)

where C(A)J1···J∆
I1···I∆

is a totally symmetric tensor in I1 · · · I∆ and J1 · · · J∆ which vanishes

when the trace is taken between any I and J index. The tensor C(A)J1···J∆
I1···I∆

is normalized by

C(A)J1···J∆
I1···I∆

C̄(B)I1···I∆
J1···J∆

= δAB . (2.71)

13See [8] for the corresponding analysis of the on-shell action for surface operators in N = 4 SYM.
14These operators carry zero U(1)B “baryonic” charge and have an equal number of C and C† fields. We

comment below on the more general operators.
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This guarantees that the operator O, is unit normalized as15

〈O(x)Ō(y)〉 =
1

|x− y|2∆ . (2.72)

Since the 1/2 BPS loop operators VC are SU(3) invariant, the chiral primary opera-

tors that have a non-vanishing correlator with VC are the SU(3) invariant ones. In the

decomposition of the [∆, 0,∆] representation of SU(4) under the maximal SU(3) × U(1)R
subgroup, there is a unique operator for each ∆ which is an SU(3) singlet and which has

a non-trivial correlator with VC . We label this operator O∆,0.
16 For a detailed discussion

see appendix B.

The SU(3) invariant chiral primary operators in (2.70) are related to the spherical

harmonics on S7 by (B.2), (B.14)

C∆J1···J∆
I1···I∆

wI1 · · ·wI∆w̄J1 · · · w̄J∆
=

√
2 ∆!

√

(2∆ + 2)!
P

(0,2)
∆ (cos ϑ1) , (2.73)

where P
(α,β)
n is a Jacobi polynomial and wI are coordinates in C

4 defined in (3.6), which get

identified with the fields CI . The argument of the polynomial is given by cosϑ1 = 1−2|w1|2.
The explicit form of the low dimension operators are given by (B.17)

O1,0 =
2π√
3λ

Tr
[

CIC†
I − 4C1C†

1

]

,

O2,0 =
8π2

3
√

5λ2
Tr
[

(CIC†
I )

2 − 10CIC†
I C

1C†
1 + 15(C1C†

1)
2
]

,

O3,0 =
16π3

√
105λ3

Tr
[

(CIC†
I )

3 − 18(CIC†
I )

2 (C1C†
1) + 63(CIC†

I ) (C1C†
1)

2 − 56(C1C†
1)

3
]

.

(2.74)

Note that all products of fields should be symmetrized and the index I is summed from

1 to 4.

Evaluating semiclassically the expectation value of these local operators in the 1/2

BPS vortex loop operator background amounts to inserting (2.48) in the expression for the

chiral primary operator. Since on-shell C2 = C3 = C4 = 0, the operator is proportional to

(C1C†
1)

∆. Then we plug into the spherical harmonic ϑ1 = π (i.e. w1 = 1) which gives

P
(0,2)
∆ (−1) = (−1)∆

(∆ + 1)(∆ + 2)

2
. (2.75)

From this we find that the correlator between a unit normalized chiral primary operator

and a 1/2 BPS vortex loop operator is given by

〈VC · O∆,0〉
〈VC〉

=
(−1)∆

|z|∆
(

4π

λ

)∆ (∆ + 2)!
√

2∆(2∆ + 2)!

M
∑

l=1

Nl |β(l)|2∆ . (2.76)

15The propagator for the scalar fields is given by
D

CI i
î
(x)C†

J
ĵ
j(y)

E

= 1
4πk

1
|x−y|

δI
Jδi

jδ
ĵ

î
.

16The subscript 0 is used to indicate that these operators have vanishing “baryonic” charge.
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This far we have focused on the chiral primary operators with equal number of C and

C† fields. There are other chiral primary operators in the theory that are SU(3) invariant

and which carry U(1)B “baryonic” charge, measuring the difference in the number of C and

C† fields. Gauge invariance in N = 6 Chern-Simons theory at level k restricts the charge

of these operators to be pk, where p is an integer. The chiral primary operators of this

type transform in the [∆± pk
2 , 0,∆∓ pk

2 ] representation of SU(4) (where ∆ ≥ |pk/2|). The

simplest ones — those with ∆ = |pk/2| — can be schematically written (taking p > 0) as

O pk
2
,p
∼ 1

λpk/2
(CI)pk , O pk

2
,−p

∼ 1

λpk/2
(C†

I )
pk . (2.77)

Gauge invariance requires that ±p units of flux are threaded through the S2 surrounding

the point where the operator is inserted [1]. As before, the correlator of such a chiral

primary operator with a vortex loop operator VC can be computed by inserting the field

produced by VC in (2.77). This yields17

〈

VC · O pk
2
,p

〉

〈VC〉
∼ 1

λpk/2
1

zpk/2
,

〈

VC · O pk
2
,−p

〉

〈VC〉
∼ 1

λpk/2
1

z̄|p|k/2
. (2.78)

As mentioned in section 2.1, some of the scalar fields CI are not single-valued when

taken around a loop operator VC . Such discontinuities in the fields of the Lagrangian are

not problematic as long as all the gauge invariant operators of the theory are single valued

when encircling VC . The chiral primary operators with p = 0 (2.70) are indeed single

valued around VC . On the other hand, it follows from (2.78) that chiral primary operators

with non-vanishing “baryonic” charge (2.77) pick up the phase

(−1)pk (2.79)

upon encircling VC . For even level k, the operators are single valued, and therefore loop

operators are physical. For odd k, however, this simplistic analysis suggests that operators

with odd p change sign. This implies that the generic vortex loop operators are unphysical

for odd k, as they do not give rise to a consistent operator algebra. An exception is the con-

struction at the end of section 2.2, where all the integers Nl with l = 1, · · ·M parametrizing

the unbroken gauge group (2.45) are even. Then the construction in (2.62) and (2.63) in-

terchanges the the eigenvalues ±β(l) upon encircling the vortex, which compensates for the

phase (2.79). In section 3.2, we will find a bulk counterpart of this statement, where the

candidate M2-brane describing a vortex loop operator exists for odd k only when all the

integers Nl are even.

Scaling weight

The stress tensor in a CFT plays an important role as it generates conformal transforma-

tions. For non-local operators, one may define the analog of the familiar conformal weight

17Though it is natural to guess that they will scale like (β(l))pk, the incomplete understanding of these

operators prevents us from determining the proper normalization as well as the detailed dependence on

β(l).
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of a local operator from the correlator of the non-local operator with the stress tensor (see

e.g [8, 21, 22]). The form of the correlator of VC with the stress tensor Tµν when C = R is

given by

〈T00 · VC〉
〈VC〉

=
h

r3
,

〈Tij · VC〉
〈VC〉

=
h

r3
[3ninj − 2δij ] , 〈T0i · VC〉 = 0 . (2.80)

Here xµ = (x0, xi), where x0 is the coordinate along C = R and ni = xi/r is the unit

normal vector to the straight line. The correlator is completely determined up to the

function h — the scaling weight — which generalizes the notion of conformal dimension of

local operators to non-local operators.

The bosonic contribution to the stress tensor of N = 6 Chern-Simons theory is given by

Tµν =
2√
g

δL
δgµν

= kTr
(

DµC
†
IDνC

I +DµC
IDνC

†
I − gµνDλC

†
ID

λCI

+
1

4
R(3)
µνC

†
IC

I +
1

4
(gµνD

2 −DµDν)C
†
IC

I − R(3)

8
gµνC

†
IC

I − gµνVpot

)

, (2.81)

where R(3), R
(3)
µν denote the scalar curvature and the Ricci tensor of the background on

which the gauge theory is defined.

The semiclassical scaling weight for a 1/2, 1/3 and 1/6 BPS loop operator VC can be

computed semiclassically by evaluating the stress tensor in the background produced by

the corresponding loop operator, which yields

h = −k
4

4
∑

I=1

M
∑

l=1

Nl |β(l)
I |2 . (2.82)

This expression is written for the most general 1/6 BPS vortex loop operator. In the other

cases with more supersymmetries, some of the β
(l)
I ’s have to be set to zero.

Since the stress tensor is in the same supermultiplet as the ∆ = 1 chiral primary

operator, the correlator of a vortex loop operator with Tµν and with O1,0 are related by

superconformal Ward identities [22]. It would be interesting to study the supercurrent

multiplet for N = 6 Chern-Simons theory.

3 Holographic M-theory description

3.1 M-theory on AdS4 × S7/Zk

The N = 6 Chern-Simons theory with U(N)k×U(N)−k gauge group we have been studying

is conjectured [1] to describe the low energy limit of the dynamics of N M2-branes on a Zk

orbifold of R
8. Therefore, this theory is expected to provide the holographic description of

M-theory with AdS4 × S7/Zk boundary conditions. The M-theory background is given by

the following metric and four-form

ds2 =
R2

4
ds2AdS4

+R2ds2S7/Zk
,

F4 =
3

8
R3 ΩAdS4 ,

(3.1)
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where ΩAdS4 is the volume-form on AdS4.

In order to identify the bulk description of the vortex loop operators VC found in the

previous section, it is convenient to foliate the bulk AdS4 metric by AdS2 × S1 slices, as

this makes manifest the symmetries of the dual loop operators. In this foliation of AdS4,

the metric in the conformal boundary is that of AdS2 × S1, where vortex loop operators

have a particularly simple description.

In this foliation the AdS4 metric is given by

ds2AdS4
= du2 + cosh2 u ds2AdS2

+ sinh2 u dφ2 , (3.2)

where ds2AdS2
is the metric of AdS2. We can then choose the metric of AdS2 in either

Poincaré or global coordinates

ds2AdS2
=
dt2 + dz2

z2
, (3.3)

ds2AdS2
= dρ2 + sinh2 ρ dψ2 . (3.4)

The Poincaré coordinates are suitable for describing loop operators supported on C = R

while global coordinates are suitable when the loop operators are supported on C = S1,

mirroring the discussion in section 2.1.2. The brane constructions we write down below

apply to both choices of AdS2 coordinates.

To write down the M2-brane action in this background we need also the gauge potential

for the four-form F4 (3.1). We take

C3 =
1

8
R3 cosh3 u ΩAdS2 ∧ dφ , (3.5)

where ΩAdS2 is the volume form of AdS2. In principle C3 is defined only up to a gauge

choice, but since we will couple it to branes that approach the boundary of spacetime,

one should impose a proper asymptotic behavior on it. The analog of choosing Fefferman-

Graham coordinates [23] near the boundary is to take the three-form to not have any

component in the du direction. Such a prescription indeed gave the correct result in N = 4

SYM in four dimensions [24].18

We choose a set of coordinates for S7/Zk defined by the embedding of the unit 7-sphere

in C
4 given by

w1 = sin
ϑ1

2
eiξ1 , w3 = cos

ϑ1

2
cos

ϑ2

2
sin

ϑ3

2
eiξ3 ,

w2 = cos
ϑ1

2
sin

ϑ2

2
eiξ2 , w4 = cos

ϑ1

2
cos

ϑ2

2
cos

ϑ3

2
eiξ4 .

(3.6)

The angles ϑ1, ϑ2 and ϑ3 all range from 0 to π. The angles ξ1, ξ2, ξ3 and ξ4 have period

2π but are subject to the Zk orbifold action

ξI → ξI + 2π/k , (3.7)

18See a more detailed discussion in [8].
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identifying wI → e2πi/kwI . In this coordinate system the metric on S7/Zk is given by

ds2S7/Zk =
1

4

[

dϑ2
1 + 4 sin2 ϑ1

2
dξ21 + cos2 ϑ1

2

(

dϑ2
2 + 4 sin2 ϑ2

2
dξ22

+ cos2 ϑ2

2

(

dϑ2
3 + 4 sin2 ϑ3

2
dξ23 + 4cos2 ϑ3

2
dξ24

))

]

.

(3.8)

The relation between the parameters of the M-theory background and of the Chern-

Simons field theory are

R3

4k
= π

√

2N

k
= π

√
2λ . (3.9)

M-theory should provide a good description of Chern-Simons theory in the (strong) ’t

Hooft coupling limit and in the regime λ5/2 ≫ N2. For larger k, when N2 ≫ λ5/2, the

perturbative bulk description is given by Type IIA supergravity on AdS4 ×CP 3 [1]. Next

we present the holographic duals of the vortex loop operators in M-theory. We repeat the

analysis in the string theory language in appendix C.

3.2 M2-brane solution

In this section we give the bulk description of the 1/2 and 1/3 BPS vortex loop operators

in the probe approximation. Since the field theory operators are supported on a curve, the

object dual to them in the bulk must end on the boundary of AdS4 along that curve. We

find that the appropriate object is an array of M2-branes in the bulk. A single M2-brane in

the bulk corresponds to the case when the vortex loop operator has a non-trivial behavior

only in a single U(1) factor. The bulk description when the broken symmetry of the loop

is L = U(N0) × U(N0) × U(N1) × · · · × U(NM ) corresponds to an array of M separated

M2-branes.

Recall from the gauge theory analysis that for gauge group U(1)×U(1) the conformal

vortex loop operators were either 1/2 BPS or 1/3 BPS, while the 1/6 BPS example had

automatically enhanced supersymmetry. Indeed we find that a single M2-brane is 1/2 BPS

or 1/3 BPS. To find 1/6 BPS configurations, one should consider a general non-Abelian

gauge group and a collection of multiple M2-branes in the bulk.

The SU(1, 1) ≃ SL(2, R) symmetry of the loop operators implies that the brane must

span AdS2 ⊂ AdS4. As explained in the previous section, the U(1)l ⊂ SO(2, 3) symme-

try that leaves the straight line or the circle invariant is broken by the field configuration

produced by a BPS loop operator. Therefore, the symmetry corresponding to shifts in the

angle φ in the bulk metric (3.2) must be broken by the M2-brane embedding. Neverthe-

less, the 1/2 BPS operators are invariant under a diagonal combination of U(1)l and an

U(1)R symmetry, which corresponds to an isometry of S7/Zk. Therefore, the M2-brane

embeddings dual to the BPS loop operators wrap AdS2×S1 ⊂ AdS4 and have a non-trivial

profile on S7/Zk, which depends on the S1 ⊂ AdS4 coordinate φ.

The 1/2 BPS loop operators excite a single complex scalar field C1, while the 1/3 BPS

loop operators excite two complex scalar fields C1 and C2. In the bulk, we can describe

both types of operators by considering M2-branes with w1 6= 0, w2 6= 0 and w3 = w4 = 0
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in (3.6), so we set ϑ2 = π. The relevant part of the metric on the compact manifold —

corresponding to an S3/Zk — is then given by

ds2S3/Zk
=
R2

4

[

dϑ2
1 + sin2 ϑ1 dϕ

2 +

(

2

k
dζ + cos ϑ1 dϕ

)2
]

, (3.10)

where we have defined new angles

ξ1 = −ϕ
2

+
ζ

k
, ξ2 =

ϕ

2
+
ζ

k
. (3.11)

Both ζ and ϕ range between 0 and 2π.

We describe the M2-brane embedding corresponding to the 1/2 and 1/3 BPS loop

operators by choosing the static gauge along AdS2×S1 ⊂ AdS4 and considering a periodic

motion on S3/Zk
ζ = ζ(φ) , ϕ = ϕ(φ) . (3.12)

The 1/2 BPS M2-brane embedding for the case of k = 1 was found in [7], and orbifolding

it gives both the 1/2 BPS and the 1/3 BPS solutions we present below. For completeness,

we rederive the solution here. The corresponding D2-brane solution in Type IIA string

theory is described in appendix C.

With this ansatz, the M2-brane action is given by

SM2 =
TM2R

3

8

∫

ΩAdS2 dφ cosh2 u







√

√

√

√sinh2 u+

(

2ζ̇

k
+ cos ϑ1 ϕ̇

)2

+ ϕ̇2 sin2 ϑ1 − cosh u







(3.13)

with a dot representing differentiation with respect to φ. The last term is the contribution

from the background three-form gauge potential and TM2 = 1/4π2 is the M2-brane tension.

The equation of motion for u has two solutions. The BPS solution corresponding to

BPS vortex loop operators is

coshu =

√

√

√

√sinh2 u+

(

2ζ̇

k
+ ϕ̇ cos ϑ1

)2

+ ϕ̇2 sin2 ϑ1 . (3.14)

The second solution is similar, with an overall factor of 2 multiplying the right-hand side.

We will not discuss the other solution here.

The equation of motion for ϑ1 gives the constraint

ζ̇ϕ̇ sinϑ1 = 0 . (3.15)

Seemingly there are four different solutions, with ζ̇ = 0, with ϕ̇ = 0, with ϑ1 = 0 and

ϑ1 = π. The last three cases may, however, be grouped together. Note that when sinϑ1 = 0,

either the angle ξ1 or the angle ξ2 is ill defined. Therefore ζ and ϕ are not independent
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variables (3.11). We therefore choose in these cases to take ϕ = 0 and end up with two

cases which should be studied separately. Using (3.14) the two cases are

1. ϕ̇ = 0 , ζ̇ = ±k
2
, (3.16)

2. ζ̇ = 0 , ϕ̇ = ±1 . (3.17)

In the first case (3.16) we have using (3.6), (3.11)

w1 = sin
ϑ1

2
ei(±

φ
2
+ξ01) , w2 = cos

ϑ1

2
ei(±

φ
2
+ξ02) , w3 = w4 = 0 , (3.18)

where φ is the world-volume coordinate parameterizing the motion around S1 ⊂ AdS4 and

ξ01 and ξ02 are arbitrary constants. The choice of sign in (3.18) corresponds to the choice

we have in making a 1/2 BPS loop operator from either a holomorphic or antiholomorphic

field configuration in the gauge theory.

For this brane embedding, w1 and w2 are proportional to each-other and by an SU(4)

rotation we can go to the case with ϑ1 = π, where w2 = 0. This solution is dual to the 1/2

BPS vortex with only C1 turned on (2.19). The supersymmetry analysis of this M2-brane

embedding is performed in appendix D, where we prove that this M2-brane is 1/2 BPS, in

agreement with the gauge theory.

In the second case (3.17) we have using (3.6), (3.11)

w1 = sin
ϑ1

2
ei(∓

φ
2
+ξ01) , w2 = cos

ϑ1

2
ei(±

φ
2
+ξ02) , w3 = w4 = 0 . (3.19)

Note that now w1 and w2 are not proportional to each-other, as their φ dependence has

the opposite sign. This solution corresponds to the 1/3 BPS vortex with both C1 and C2

turned on (2.25), where one field is holomorphic and the other one antiholomorphic. We

show in appendix D that in this case the M2-brane solution is 1/3 BPS, in agreement with

the gauge theory. Furthermore we show that for k = 1, 2, where the M-theory background

preserves thirty-two supercharges, this solution becomes 1/2 BPS.

The representation of the solutions in (3.18) and (3.19) obscures one detail, which

is the action of the Zk orbifold. w1 and w2 are single valued complex numbers only in

the universal covering space S7. In that case both solutions correspond to great circles.

Therefore it is also not surprising that for k = 1, 2 both solutions preserve the same number

of supersymmetries. The distinction between the solutions comes when considering the

orbifold, which acts also along great circles of S7. The orbifold acts by shifts on the Hopf

fiber. In the 1/2 BPS case (3.18) the two circles are completely aligned, as the M2-brane

wraps the Hopf-fiber k/2 times. In the 1/3 BPS case the angle between the circle that the

M2-brane wraps and the circle on which the orbifold acts is ϑ1.

In all of the solutions above the phases of wI behave like ±φ/2, which is directly related

to the square-root dependence in the vortex loop operator field configuration. For a single

vortex we would take the M2-brane to wrap the φ circle inside AdS4 once, which would

require to identify wI ≃ −wI . This indeed is the case for even k, since the orbifold action

identifies wI → e2πi/kwI . For odd k, however, we find that there is no single M2-brane
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solution, as in this case the M2-brane does not close. This is the bulk realization of a

similar phenomenon we found on the gauge theory side, where for odd k the theory with

a single vortex was ill defined.

Having established the M2-brane solutions dual to the 1/2 BPS and 1/3 BPS vortex

loop operators we calculate now the expectation value of the loop operators VC , with C = R

or C = S1, in the supergravity regime. The expectation value is determined by the on-shell

action of the corresponding M2-brane

〈VC〉 = exp(−SM2) . (3.20)

Indeed, for either choice of curve — a line or a circle — plugging in the classical solution

into the M2-brane action (3.13) yields a vanishing answer. This shows that the expectation

value of a BPS loop operator at strong coupling is

〈VC〉 = 1 , (3.21)

coinciding with the weakly coupled, semiclassical gauge theory analysis of section 2.3.

3.3 Mapping probe brane and gauge theory data

We now proceed to identify the parameters describing the loop operators we constructed

in the gauge theory with the parameters of the corresponding M2-branes in AdS4×S7/Zk.

The M2-brane solutions we wrote down, with a single brane winding once around the

φ circle correspond to vortex loop operators where only a 1×1 block of the scalar fields CI

is turned on. This means that in equation (2.45) N0 = N − 1 and N1 = 1, so the unbroken

gauge symmetry is L = U(N − 1)2 × U(1). This case is therefore very similar to the loop

operators in the U(1) × U(1) theory in section 2.1, to which we now compare.

The 1/2 BPS vortex loop operator (2.19) depends on two parameters, a real positive

number |β| and and angular variable α. Likewise the M2-brane solution (3.18) (after

setting ϑ1 = π by an SU(4) rotation) depends on two parameters: u, which determines

the radius of curvature of the AdS2 × S1 worldvolume metric and an angular variable ξ01 ,

which gives the relative phase between the circle in AdS4 and the Hopf fiber in S7/Zk.

We propose to identify

sinhu =
1

π
√

2λ
|β| , ξ01 =

2πα

k
. (3.22)

This mapping of parameters is determined by the symmetries that the solutions preserve

and those they break, up to constants, which are guessed from the analogy with the

surface operators in N = 4 SYM [8].

The 1/3 BPS vortex loop operator in the Abelian theory (2.25) depends on four real

parameters: A pair of complex numbers (β1, β2) subject to the identification (β1, β2) ≃
eiθ(β1, β2) and an angular variable α. The associated M2-brane (3.19) depends, as in the

1/2 BPS case, on u, but now the solution depends also on the angle ϑ1 measuring the

angle between the circle that the M2 wraps and the circle on which the Zk orbifold acts.
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In addition, the brane embedding depends on two phases ξ01 and ξ02 , which can be also

rearranged, as in (3.11) into

ϕ0 = ξ02 − ξ01 , ζ0 =
k

2

(

ξ01 + ξ02
)

. (3.23)

To find the map between the gauge theory parameters and the parameters of our M2-

brane solution (3.17), we recall that the two homogeneous coordinates w1 and w2 defined

in (3.6) correspond to the fields C1 and C2 in the gauge theory. The vortex singularity has

the following form (2.25)

C1 =
β1√
z
, C2 =

β2√
z̄
. (3.24)

Using the map C1 → w1 and C2 → w2, we find that

tan
ϑ1

2
e−iϕ =

w1

w2
=
C1

C2
=
β1

β2

√

z̄

z
=
β1

β2
e−iφ . (3.25)

Comparing with the M2-brane solution we see that this loop operator corresponds to the

choice of positive sign in equation (3.17), the choice of negative sign corresponding to a

vortex loop operator where the role of holomorphic fields is replaced by antiholomorphic

fields. Using (3.19) and (3.23) and the fact that on the solution ϕ = φ+ ϕ0, we find that

tan
ϑ1

2
e−iϕ0 =

β1

β2
. (3.26)

The remaining two parameters on the M-theory side are identified in a similar way to the

1/2 BPS case. Explicitly, the proposed identification of parameters of the 1/3 BPS loop

operator and of the 1/3 BPS M2-brane is given by

sinhu =
1

π
√

2λ

√

|β1|2 + |β2|2 , tan
ϑ1

2
=

∣

∣

∣

∣

β1

β2

∣

∣

∣

∣

,

ϕ0 = arg
β2

β1
, ζ0 = 2πα .

(3.27)

The 1/2 BPS case is recovered by taking ϑ1 → π. As we saw, our choice of holomorphic

fields corresponds to the choice of positive sign in (3.17). Because ζ and ϕ appear with

opposite signs in (3.11), we conclude that in the 1/2 BPS case we should take the negative

sign in (3.16) to match with the holomorphic vortex loops in the gauge theory. The positive

sign corresponds to antiholomorphic vortex loop operators.

Turning to the non-Abelian case, all the BPS vortex loop operators constructed in

section 2.2 are described by block-diagonal matrices, where in each block there is a copy of

a 1/3 BPS vortex of the Abelian theory (possibly rotated). This is mirrored in the M-theory

dual, where each block in the matrix should be represented by a single M2-brane.

Specifically, the general BPS vortex in the non-Abelian theory depends on M integers

N1, · · ·NM and has an unbroken gauge symmetry U(N0)
2 × U(N1) × · · · × U(NM ), where

N0 = N −∑M
l=1Nl. The natural identification is to represent in M-theory each block by

a single M2-brane wrapped Nl times around the φ circle in AdS4. The rest of the data
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in the classification of the vortex loop VC are the collection of numbers (β
(l)
I , α(l)). They

are related to the M2-brane parameters as in (3.27), with the only extra new information

being that in the 1/6 BPS case (2.58), (2.59) in each block the vortex may have different

ratios of β
(l)
1 and β

(l)
2 and of β

(l)
3 and β

(l)
4 , which translates in an obvious way to a choice

of S3/Zk in which the M2-brane is embedded.

As noted before, for odd k the single M2-brane configuration is inconsistent, as it does

not close onto itself. This is the M-theory manifestation of the fact that some operators

in the gauge theory are not single valued in the presence of vortex loop operators for odd

k. This problem is avoided, though, when all M2-branes are wrapped an even number of

times around the φ circle. According to the preceding prescription, this happens when the

integers Nl with l = 1, · · ·M parameterizing the unbroken gauge group are all even. Indeed

we saw also on the gauge theory side that to construct consistent vortices at odd k requires

all Nl to be even and that it involves a non-Abelian twist (2.62) and (2.63).

3.4 Correlator with local operators

We want to calculate, using the preceding probe M2-brane description, the correlator of

a vortex loop operator VC with a chiral primary operator. This is the bulk M-theory

analog of the calculation performed in the gauge theory in section 2.4. We will perform

this computation for the 1/2 BPS solution (3.16). The necessary harmonic analysis on

AdS4×S7/Zk and the analysis of supergravity fluctuations needed for this computation are

detailed in appendices B and E, based on [25–27]. Similar calculations have been performed

in the context of AdS7 × S4 in [28, 29] and in the context of AdS5 × S5 in [8, 30–33].

A chiral primary operator in N = 6 Chern-Simons theory OA corresponds in the dual

supergravity description to a four dimensional scalar field sA propagating in AdS4. The

correlator of a vortex loop operator VC and a chiral primary operator is determined by

the normalizable mode of sA produced by the probe M2-brane. Therefore, we must first

compute the linearized coupling of the M2-brane to the supergravity field sA. This is found

by varying the membrane action with respect to the spacetime metric and three-form field

δSM2 =
TM2R

3

8

∫

d3σ

[

1

2

√

det gab g
ab ∂aX

M∂bX
N hMN − P [δC3]

]

. (3.28)

Here gab is the induced metric on the brane, which is that of AdS2 ×S1 with radius cosh u.

hMN and δC3 are the fluctuations of the metric and three-form field and the indices M

and N go over all eleven dimensions.

Since we are interested in the correlator with a chiral primary operator, which is dual

to the bulk field sA, we must relate the fluctuations of the metric and three-form in (3.28)

to sA. To linear order, the harmonic expansion of the metric and three-form fluctuations

are given by (E.1), (E.5)

hAµν =
4

(J + 2)

[

∇µ∇ν +
J(J + 6)

8
gµν

]

sA − 7J

6
gµνs

A

hAαβ =
J

3
gαβ s

A,

δCAµνρ = 2 εµνρλ∇λsA ,

(3.29)
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where µ, ν, · · · are indices along AdS4 and α, β, · · · are indices along S7/Zk. The inte-

ger J determines the eigenvalue of the Laplacian on S7/Zk of the corresponding spherical

harmonic and is equal to twice the conformal dimension ∆ of the dual operator (see ap-

pendix B).

Using the coordinate system (3.2), (3.3), and the metric in (3.10), the relevant part of

the bulk metric is given by

ds2 =
cosh2 u

z2

(

dt2 + dz2
)

+ du2 + sinh2 u dφ2 + ds2S3/Zk
. (3.30)

On the 1/2 BPS solution (3.16), where the worldvolume coordinates are t′, z′ and φ′ and

where ϑ1 = π and ζ̇ = k/2, we find that the induced metric on the M2-brane is given by

gab =
1

cosh2 u
diag

(

z2, z2, 1
)

. (3.31)

The various fluctuations appearing in (3.28) are given by

∂aX
M∂bX

N hAMN = diag

(

hAtt, h
A
zz, h

A
φφ +

J

3
sA
)

P [δCA3 ] = 2
cosh2 u sinhu

z2
∂us

A .

(3.32)

We then find that the linearized coupling of the bulk field sA to the M2-brane worldvolume

is given by

δSM2 =
TM2R

3

8

∫

dz dt dφ
coshu

2(J + 2)

[

4

(

∂2
z + ∂2

t +
1

z2
∂2
φ −

J − 1

z2
coshu sinhu∂u

)

− 2J(J − 1)

3

(3 cosh2 u− 1)

z2
+
J(J + 2)

3z2

]

sAY A , (3.33)

where Y A are S7/Zk spherical harmonics.

We now consider the insertion of the local chiral primary operator corresponding to

sA at the AdS2 × S1 boundary point labeled by (t, z, φ). The expression for sA at a point

(t′, z′, φ′, u) along the brane once a source sA0 (t, z, φ) is specified on the boundary is given

by integrating the bulk-to-boundary propagator from the point at the boundary to a point

in the brane. The bulk-to-boundary propagator in our coordinate system is given by19

G(u, z′, t′, φ′) = cJ
z′∆

cosh∆ uD∆
, (3.34)

where

D ≡ (t′ − t)2 + z′2 + z2 − 2z′z tanhu cos(φ′ − φ) , (3.35)

and cJ is a normalization constant given by (E.12), which guarantees that the bulk com-

putation of the two-point function of the corresponding chiral primary operator is unit

19We recall that ∆ = J/2.
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normalized as in (2.72). Acting with the derivatives on the propagator and simplifying we

find that the correlator of the vortex loop operator with the chiral primary operator dual

to sA is
〈

VC · OA
〉

〈VC〉
= −TM2R

3

8

∫ ∞

−∞
dt′
∫ ∞

0
dz′

∫ 2π

0
dφ′

2∆ cJ

cosh∆+1 u

2z′∆z2

D∆+2
Y A

= −TM2R
3

8

4cJ∆
√
π z2

cosh∆+1 u

Γ(∆ + 3/2)

(∆ + 1)!

∫ 2π

0
dφ′ Y A

∫ ∞

0
dz′

z′∆

D̂∆+3/2
,

(3.36)

where D̂ ≡ z′2 + z2 − 2z′z tanhu cos(φ′ − φ).

The z′ integration yields (first scaling z out)

∫ ∞

0
dz′

z′∆

D̂∆+3/2
=

1

z∆+2

∫ ∞

0
dz′

z′∆

(1 + z′2 − 2z′ tanhu cos φ̂)∆+3/2

=
1

z∆+2

√
π

2∆+1

∆!

Γ(∆ + 3/2)

1

(1 − tanhu cos φ̂)∆+1
,

(3.37)

where φ̂ = φ′ − φ.

Lastly we perform the φ′ integration. Here we need the explicit form of the spherical

harmonics from appendix B. For the 1/2 BPS M2-brane solution we have ϑ1 = π and

ξ1 = ξ01 − φ′/2. Using that Pα,βn (−1) = (−1)n
(n+β
n

)

we get from (B.14)

Y∆,p(ϑ1 = π) = (−1)∆−

√

(∆+ + 2)! (∆− + 2)!

2(2∆ + 2)!
eipk(ξ

0
1−φ

′/2) , (3.38)

where ∆± = ∆ ± pk
2 . Therefore the last integral is of the form

1

cosh∆+1 u

∫ 2π

0
dφ̂

eipkφ̂/2

(1 − tanhu cos φ̂)∆+1
= 2π

∆−!

∆!
P
pk/2
∆ (cosh u), (3.39)

where Pmn (x) is an associated Legendre function.

Assembling everything together, we find

〈VC · O∆,p〉
〈VC〉

=
(−1)∆−+1

(2π2λ)1/4
π

2
√

2
∆−!

√

(∆+ + 1)(∆+ + 2)(∆− + 1)(∆− + 2)

(2∆)! (∆ + 1)

× eipk(ξ
0
1−φ/2)

z∆
P
pk/2
∆ (cosh u) , (3.40)

where O∆,p are the SU(3) invariant chiral primary operators. For the first few values of ∆,

we find

〈VC · O1,0〉
〈VC〉

=
1

(2π2λ)1/4
3
√

2π

4

coshu

z
,

〈VC · O2,0〉
〈VC〉

= − 1

(2π2λ)1/4
π

2

3 cosh2 u− 1

z2
,

〈VC · O3,0〉
〈VC〉

=
1

(2π2λ)1/4

√
10π

8

5 cosh3 u− 3 cosh u

z3
.

(3.41)
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Using that the leading power in the Legendre polynomials is P 0
n(x) =

(

2n
n

)

xn

2n + · · · we can

write the leading term for operators with arbitrary ∆ as

〈VC · O∆,0〉
〈VC〉

=
1

(2π2λ)1/4
π(∆ + 2)

2
√

2

√

(2∆ − 1)!! (∆ + 1)

(2∆)!!
cosh∆ u+ · · · (3.42)

Also using Pnn (x) = (−1)n(2n − 1)!!(1 − x2)n/2 we have for the case of pk = 2∆ that

〈

VC · O pk
2
,p

〉

〈VC〉
= − (−i)∆

(2π2λ)1/4
π√
2

√

(2∆ + 1)!!

(2∆)!!

(

ei(2ξ
0
1−φ)

z

)∆

sinh∆ u . (3.43)

Comparison to semiclassical calculation

It is interesting to try to compare our results here to those we found by semiclassical

techniques in N = 6 Chern-Simons theory in section 2.4. The expectation value of the

vortex loop operator VC is unity in both regimes, so it seems not to get renormalized. The

correlation function of a loop operator with a chiral primary operator does, however, get

non-trivial quantum corrections to all orders in the ’t Hooft coupling. This is in contrast

to the analog computation with surface operators in N = 4 SYM, whose correlators with

local operators seem to get quantum corrections only to a finite loop order [8].

Using (3.27) we can represent the result of our calculation performed at strong coupling

(3.40) in terms of the gauge theory variables

〈VC · O∆,p〉
〈VC〉

∼ 1

(2π2λ)1/4
e4πipα√
z∆+ z̄∆−

P
pk/2
∆

(
√

1 +
|β|2
2π2λ

)

. (3.44)

We omitted all numerical factors in this expression. Also we replaced zeiφ → z, which is

the holomorphic coordinate in the plane transverse to the loop that we used in the gauge

theory calculation.

There are some general features we would like to point out in this expression. First,

the dependence on the holomorphic and anti-holomorphic coordinates z and z̄ is as would

be expected for a field of dimension ∆ and U(1)B charge pk. A feature that might seem

surprising at first is the appearance of α, the holonomy of the gauge field, in the correlator

of a scalar operator. This happens only in the case of non-zero p, when the chiral primary

operator is not made purely of scalar fields, but also carries a monopole charge, and hence

the dependence also on the holonomy of the gauge field.

In the gauge theory calculation in the semiclassical approximation we found that for

p = 0 (2.76)

〈VC · O∆,0〉
〈VC〉

∼ 1

|z|∆
(

4π

λ

)∆

|β|2∆ . (3.45)

This semiclassical result will receive quantum corrections. A simple class of quantum

corrections involves self-contractions of the scalar fields in the operator O∆,0. Since a pair

of scalars CC† have to be contracted with another pair, this class of graphs give quantum

corrections in λ2/|β|4 only to a finite loop order, ∆−.
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The numerical coefficients appearing in the correlators seem to get renormalized be-

tween weak and strong coupling as well as the form of the expansions in β and λ, where

|β|2
λ

→ |β|√
λ
, (3.46)

which is a generalization of the scaling of the coupling from weak to strong coupling that

appears in other calculations in this theory. In addition we find that the correlators in

M-theory get an extra factor of λ−1/4. The only thing that seems to match is the fact

that the calculation involves also a polynomial of degree ∆− in the respective expansion

parameters at weak coupling and strong coupling.

3.5 “Bubbling” M-theory geometries

In section 3.2 we found the description of a vortex loop operator in terms of probe branes

embedded in AdS4 × S7/Zk. The probe brane description of a vortex loop operator is

valid as long as the number of M2-branes is much smaller than N . The operators for

which the probe approximation is valid have N0 ∼ N in (2.45). When the number of

branes describing the operator is of order N , the gravitational backreaction of the M2-

branes cannot be neglected, and the proper dual description of the operator is in terms of

“bubbling geometries” [34].

The supergravity solutions capturing the backreaction of the 1/2 BPS M2-brane so-

lutions of section 3.2 can be written down by a simple modification of a class of bubbling

supergravity solutions found by Lunin in [7]. The supergravity solutions constructed by

Lunin posses an SL(2, R)×SO(6) symmetry and can be obtained by a double Wick-rotation

of the bubbling solutions describing giant gravitons in AdS4 × S7 [34]. By appropriately

orbifolding, we find solutions where the symmetry is generically broken to SL(2, R)×SU(3).

The metric ansatz studied in [7] (before orbifolding) has factors of AdS2 and S5 which

make explicit the desired SL(2, R) × SO(6) symmetries. The metrics can be written as

ds2 = e2ω(y2e−6ω − 1)(dχ+ Vidx
i)2 +

e−4ω

4(y2e−6ω − 1)
(dy2 + eD(dx2

1 + dx2
2))

+ e2ωds2S5 +
1

4
y2e−4ωds2AdS2

.

(3.47)

The supergravity solutions are completely determined by a function D, which satisfies a

3-dimensional Toda equation in the coordinates x1, x2 and y. The warp factor ω and the

vector field Vi are given in terms of D by

e−6ω =
∂yD

y(1 − y∂yD)
, Vi =

1

2
εij∂iD . (3.48)

These solutions also have a four-form field strength turned on. It is given by (⋆3 is the

Hodge-duality operator on the base manifold parametrized by x1, x2 and y).

F4 =

(

d
[

−4y3e−6ω(dχ+ V )
]

+ 2 ⋆3

[

e−Dy2

(

∂y
1

y
∂ye

D

)

+ y∂i∂yDdx
i

])

∧ΩAdS2 . (3.49)
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As already mentioned, the solution is completely determined by the function D, which

solves the equation

(∂2
1 + ∂2

2)D + ∂2
ye
D = 0 . (3.50)

One needs to analyze this equation and the allowed boundary conditions and singularities

that give rise to smooth geometries.

In [7] two classes of solutions were considered, of which the second class is the relevant

one for us. For these solutions the y coordinate extends from 0 to infinity. At y = 0 the

function D develops a singularity, D ∼ log y, where the radius of the S5 shrinks to zero

size, but the full metric remains regular.

The other allowed singularities for the function D occur along semi-infinte rays ex-

tended in the y direction, with y ≥ y(l) at fixed x
(l)
i . Near the rays D ∼ − log |x − x(l)|

and at the tip of each ray the circle parametrized by χ in (3.47) shrinks to zero size, but

again in a regular fashion.20 A bubbling supergravity solution is completely determined by

specifying the ray structure, which is characterized by the position of the ends of the rays

(x
(l)
i , y

(l)), for l = 0, . . . ,M .

To adapt these solutions to the problem at hand, we need to perform a Zk orbifold

of some circle in the ten dimensional geometry. The geometries in (3.47) have a U(1)

isometry, which acts by shifts on the coordinate χ spanning the circle. In addition to the

manifest circle, there is the S5 which can be written as a circle fibration over CP
2. If we

set w1 = 0 in (3.6) we can write the S5 metric in the form

ds2S5 = ds2
CP2 + (dζ ′ + ω̃)2 , ζ ′ =

ξ2 + ξ3 + ξ4
3

. (3.51)

We take the Zk orbifold to act on the angle

ζ =
χ+ 3ζ ′

4
. (3.52)

As we show below, for the AdS4 × S7 solution indeed ζ = (ξ1 + ξ2 + ξ3 + ξ4)/4, which is

the desired orbifold direction.

This orbifold action is singular at any point in the geometry where the ζ circle shrinks

to zero size. Since there are no mixed metric components for the coordinates χ and ζ ′,

this happens only at the locus where both circles shrink to zero size. The ζ ′ circle shrinks

when the radius of S5 goes to zero, which as we reviewed occurs at y = 0. The χ circle,

on the other hand, shrinks to zero at the tip of each of the rays at (xi, y) = (x
(l)
i , y

(l)).

Since regular solutions have y(l) > 0, these two conditions never coincide, and consequently

the orbifold action has no fixed points. Therefore, we can orbifold the solutions in [7] and

obtain completely regular backgrounds.

In order to understand the relation between the orbifolded bubbling geometries and

probe M2-branes it is illuminating to describe theAdS4×S7 solution in this form. This solu-

20There is an alternative description of these solutions where the rays are replaced by finite rods with

0 ≤ y ≤ y(l), but the mapping between it and the probe brane picture is more complicated. Note, though,

that in our description the x plane is double valued.
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tion corresponds to a single ray located at x
(0)
i = 0 with y(0) = R3. It can be expressed as [7]

x1 + ix2 = x eiψ , x = R3 sinhu sin2 ϑ1

2
, y = R3 cosh u cos2 ϑ1

2
,

e2ω = R2 cos2
ϑ1

2
, eD = cot2

ϑ1

2
, V = − sinh2 u

2(sinh2 u+ sin2 ϑ1
2 )

dψ .
(3.53)

This completely matches the metrics (3.2), (3.4), (3.8) once the following identification of

angles is made

χ = ξ1 , ψ − 2χ = φ . (3.54)

The remaining angles ϑ2, ϑ3, ξ2, ξ3 and ξ4 parametrize S5. Orbifolding the ζ circle (3.52)

indeed gives the metric on AdS4 × S7/Zk.

It is easy to identify the probe brane solution (3.16) of section 3.2 in this construction.

It corresponds to two rays, one at x
(0)
i = 0 and y ≥ y(0) = R3, which generates the

AdS4 × S7/Zk geometry (3.53) and another at a point x
(1)
i with very small y(1). This

second singularity represents an M2-brane at ϑ1 = π, sinhu = |x(1)|/R3 and ξ01 = ψ(1)/2.

The number of coincident M2-branes (or their wrapping number) is related to the value of

y(1) by a rather complicated integral given in [7].

Before orbifolding, the geometries found in [7] preserve sixteen supercharges. We

expect that orbifolding the ζ circle by ζ ≃ ζ+2π/k will break the supersymmetry down to

twelve supercharges. These orbifolded geometries provide the dual gravitational description

of the 1/2 BPS vortex loop operators VC in the supergravity regime, when the probe

approximation breaks down, corresponding to the case when the number of probe M2-

branes is of order N . The parameters of the solutions indeed match those of the 1/2

BPS vortex loop operators. The vortex loop operator with gauge group broken down to

L = U(N0)
2 ×U(N1)× · · ·U(NM ) gets identified with the bubbling geometry consisting of

M + 1 rays. One of the rays is at x
(0)
i = 0 while the remaining M others are at positions21

x
(l)
1 + ix

(l)
2 = 4k|β(l)|e4πiα(l)

, (3.55)

where α(l) and β(l) are the parameters characterizing the vortex loop operator (2.48), (2.51).

The integers Nl correspond to the length of the rays y(l).

The “bubbling” geometry has weak curvature everywhere when λ is large and all rays

are well seperated and the values of y(l) are all comparable (as mentioned above y(l) ∼ 0

corresponds to a probe brane). In this regime eleven dimensional supergravity on this

background provides the most reliable description of the vortex loop operators we have

constructed in this paper.

As discussed earlier, some of the 1/3 BPS vortex loop operators have the special

property that they become 1/2 BPS for k = 1, 2. In the probe approximation all the M2-

branes wrap the same great circle on the covering space S7, but this circle is not aligned

with the direction of the orbifold. In these cases the 1/3 BPS vortices can also be described

by an orbifold of the 1/2 BPS geometries above, by letting Zk act on a different angle than

21we use (3.22) and R3/4k = π
√

2λ.
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ζ (3.52). It would be interesting to understand the details of this as well as to find the

most general geometry preserving eight supercharges, and representing the most general

1/3 BPS vortex loop operator.

It is possible to calculate the correlation function of the vortex loop operators with

chiral primary local operators, as we did in the gauge theory in section 2.4 and in the probe

approximation in section 3.4, also in the bubbling geometry description. This was carried

out for the case of surface operators in N = 4 SYM in [8] using techniques from [35]. It

would be interesting to work out the details of the formalism in this case too and have

another set of results to compare with the gauge theory (2.76) and with the probe (3.40)

calculations.

4 Discussion and summary

The N = 6 supersymmetric Chern-Simons theory of Aharony, Bergman, Jafferis and Mal-

dacena [1] provides a concrete duality between a three dimensional interacting conformal

field theory and quantum gravity on spaces with AdS4 ×S7/Zk asymptotics. The gravita-

tional description of three dimensional field theories provides us with new tools to study the

behaviour of these theories at strong coupling, which may lead to new insights on the be-

haviour of strongly coupled three dimensional theories describing various physical systems.

In this paper we have constructed novel disorder operators in Chern-Simons-matter

theories. These operators, apart from providing a new tool to study holography, may

find applications in other Chern-Simons-matter theories, known to describe some physical

systems. In particular, these operators have a singularity along a curve in spacetime for

the matter fields and gauge fields in the theory. These are codimension two vortex field

configurations, not unlike the vortices in superconductors or other physical systems. These

operators may serve as order parameters for new phases in these theories.

The codimension two singularities characterizing these loop operators in Chern-

Simons-matter theories are similar to the codimension two singularities describing surface

operators in N = 4 SYM [5] (see also [6]). Recently [8], these surface operators have

been used to perform precision calculations across the different coupling regimes: Weakly

coupled semiclassical gauge theory, D-branes in AdS5 × S5 and “bubbling” supergravity

solutions. For all the calculations in that theory there seems to be remarkable agreement

between the various regimes. For the most detailed calculation, the correlator between a

surface operator and a chiral primary operator, the supergravity result can be rewritten in

the gauge theory language to yield the precise semiclassical answer plus a finite series of

quantum corrections, providing strong evidence that these operators only receive a small

subset of the possible quantum corrections. Similar calculations across the various different

regimes of coupling have been performed in [22, 32, 36, 37] for Wilson loops in N = 4 SYM.

While the calculations performed in this paper are indeed similar to those in [8], just

like in other corners of the AdS4/CFT3 duality, the agreement is not as clean as in the

case of AdS5/CFT4. Yet, since the agreement in the case of surface operators in the four

dimensional CFT is so clean, we hope that understanding vortex loop operators in the
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three dimensional CFT will help us learn how to perform precision calculations in the

AdS4/CFT3 duality.

We gave a rather detailed exposition on disorder vortex loop operators — both from

the gauge theory point of view and from M-theory — which we hope will be a useful

starting point for a more detailed study of these objects. But for the benefit of the casual

reader we provide now a summary of our results organized in a different way than the main

text — intertwining results from the gauge theory and M-theory pictures.

The most symmetric object we have described is the 1/2 BPS vortex loop operator.

It turns on only one of the four complex scalar fields and to preserve conformal symmetry

it has a singularity along a line or a circle in space-time (2.19). In the M-theory dual it is

described by an M2-brane occupying a hypersurface AdS2×S1 ⊂ AdS4. Going around the

S1, the brane also wraps k/2 times the orbifolded circle on S7/Zk. Consequently, a single

abelian vortex loop is well defined only for the theory with even k. At odd k one needs

to compensate for this by “doubling” the vortex, so in the M-theory picture it wraps the

orbifold circle k times. We have pointed out throughout the text the subtleties that arise

when trying to define the vortex loops at odd k and explained how they are resolved.

This vortex loop preserves twelve out of the twenty-four supercharges of the theory.

In the case of the line, where it is a holomorphic function in the transverse plane, it pre-

serves six super-Poincaré generators and six superconformal ones (for the circle it is linear

combinations of both). In fact, the only other known operators preserving six Poincaré su-

percharges are the “baryonic” local operators (C)pk. Other chiral primary local operators

preserve only four of the Poincaré supercharges (of course, all chiral primaries preserve also

all the super-conformal generators, a property not shared by non-local operators).

The 1/2 BPS vortices have a close cousin which is 1/3 BPS. On the gauge theory

side it corresponds to turning on a second scalar field and giving it an anti-holomorphic

dependence in the transverse space. In M-theory it is described by a similar M2-brane

occupying the same hypersurface inside AdS4, only that now the motion on S7/Zk is on

another circle, at arbitrary angle with respect to the direction of the orbifold.

These vortex loops preserve eight of the twenty-four supercharges of the vacuum, and

in the case of the line four of the twelve super-Poincaré generators. In fact, there is a close

analogy to the spectrum of chiral primary operators, where after the orbifold projection

some of the 1/2 BPS operators retain six super-Poincaré generators while all the others

retain only four. The most symmetric ones, (C)pk are the ones whose momentum is aligned

with the orbifold direction. Likewise the same M2-brane solution on S7 is the dual of the

1/2 BPS vortex loop and the 1/3 BPS vortex loop, depending on the direction of the

orbifold action.

The discussion so far applied in most generality only to the Abelian theory with gauge

group U(1)×U(1). In the non-Abelian case the situation is considerably richer: There are

still the 1/2 BPS vortices involving only a single scalar field. Using a gauge transformation

it can still be diagonalized and is characterized by 2M real numbers (M ≤ N), the strength

of the singularity for this scalar and for the gauge field in M different sub-blocks of N ×N
matrices. The M-theory dual is a collection of M2-branes all with the same orientation on

S7/Zk but occupying different AdS2 × S1 subspaces of AdS4.
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The same configuration, where all M2-branes are still oriented the same way, but not

along the direction of the Hopf-fiber, is dual to a class of 1/3 BPS vortices. In the gauge

theory description a second scalar field is turned on and is antiholomorphic. The fact that

all the M2-branes are aligned is manifested in a constraint on the ratio of the two scalars.

If this constraint is relaxed, we find a more general family of 1/3 BPS vortices, with 4M

parameters. Their dual in M-theory is a collection of M2-branes which are not wrapping

the same circle on S7/Zk, yet still they are all within an S3/Zk subspace. It is possible to

turn on the two remaining scalars in a way that corresponds to quite general M2-branes

on all of S7/Zk, still preserving four supercharges (1/6 BPS).

In cases where there is a large number of M2-branes, it is no longer possible to ignore

their backreaction and the proper dual description of the vortex loop operator is as a

“bubbling geometry”. The metrics describing the case of the 1/2 BPS vortex loops are

given by orbifolding a known solution [7]. A similar analysis should apply also to the 1/3

BPS ones which have a 1/2 BPS origin. It would be very interesting to find the more

general 1/3 BPS geometries, those with 4M parameters.

One result that we have found for all our vortex loops regardless of the amount of

supersymmetry they preserve is that their expectation value is trivial

〈VC〉 = 1 . (4.1)

The same result was obtained from M-theory too. We expect that other vortex loop

operators, with more complicated geometry, will have finite expectation values. We leave

this for future exploration.

To get a better handle on these operators we proceeded to calculate their correlation

functions with chiral primary local operators. As mentioned above, the similar calculation

for the surface operators in N = 4 SYM [8] suggested the precise agreement between

supergravity and a finite series of quantum corrections to the classical gauge theory results.

In the case of the N = 6 Chern-Simons theory, the results were much more complicated.

The correlator has non-trivial dependence on the gauge coupling as well as the parameters

of the vortex loop operator which do not agree between weak and strong coupling, meaning

that they get renormalized. One feature that can be traced from weak to strong coupling,

though, is that in both cases the correlator contains a polynomial of the same degree in

the respective couplings.

We would like to point out that this Chern-Simons theory has other loop operators

— Wilson loops. These are order-operators, which can be expressed by the insertion of

fundamental fields into the path integral. While the operators presented here have some

distinct features that we could compare between the different regimes and they seem quite

different from those of the Wilson loops of [9–11], we cannot be sure that these operators

do not mix with each-other.

To conclude, the program of identifying the bulk gravitational description of non-

local operators in N = 6 Chern-Simons theory is the three dimensional counterpart of the

analogous program for N = 4 SYM. There, supersymmetric Wilson loops can be described

in a variety of ways, perturbatively in N = 4 SYM [38, 39], as strings in AdS5 [30, 40–42],

as a configuration of D3-branes [24, 43, 44] or as a configuration of D5-branes [43, 45], and
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finally as asymptotically AdS5×S5 “bubbling” supergravity backgrounds [46–48]. Likewise

disorder surface operators can be given a probe D3-brane description [5, 6] as a well as a

“bubbling” supergravity description [6], while order surface operators can be given a probe

D7-brane description as well as “bubbling” supergravity description [49, 50].

In the context of the AdS4/CFT3 duality, apart from the dictionary proposed already

in [1], and the bulk identification of the disorder loop operators found in this paper, the

D2 and D6 probe brane description of a family of Wilson loops was found in [9] (see

also [51]), while the M2-brane giant graviton description of chiral primary operators has

appeared in [52, 53]. In [54] (see also [18, 55]) the N = 6 Chern-Simons theory description

of multiple M5-branes was proposed. These probe branes, and others which may still

be found, promise to be useful and interesting tools to understand the strong coupling

dynamics of three-dimensional conformal field theories.
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A Superconformal symmetries

In this appendix we show that the conformally invariant vortices that preserve some of the

Poincaré supersymmetries also preserve the same amount of conformal supersymmetries.

There is a simple proof of this statement using group theory; the superconformal gener-

ators are given by the commutator of the special conformal generators and the Poincaré

supercharges, so are necessarily a symmetry of any operator invariant under the other two

generators. Still we find it interesting to go through the exercise in detail, since this theory

and its formalism are quite new.

Like in the case of the Poincaré supercharges, the only non-trivial superconformal vari-

ation in a bosonic background is that of the fermions. The superconformal transformations

are obtained in the usual way once the Poincaré supersymmetry variation is known, see [19]

(we follow the convention in [18]). The variation is given by (2.6)

δψI = −γµγνxνηIJDµC
J + 2πγνxν

(

−ηIJ(CKC†
KC

J − CJC†
KC

K) + 2ηKLC
KC†

IC
L
)

−ηIJCJ , (A.1)
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where ηIJ is a constant spinor satisfying

ηIJ = (ηIJ )∗ , ηIJ =
1

2
ηIJKLηKL , (A.2)

and as with ǫIJ (2.8), we decompose ηIJ according to their helicity in the z-plane, so that

ηIJ = η+
IJ + η−IJ , where

γzη+
IJ = 0 , γz̄η−IJ = 0 . (A.3)

For simplicity we do all the calculations for gauge group U(1)×U(1) but our analysis

will apply for all the solutions discussed in section 2, since all the matrices there commute.

In the Abelian theory (A.1) reduce to

δψI = −
(

γµγνxνDµC
J + CJ

)

ηIJ = −
(

2zDzC
J + CJ

)

η+
IJ −

(

2z̄Dz̄C
J + CJ

)

η−IJ . (A.4)

For the 1/2 BPS vortex

C1 =
β√
z
. (A.5)

Equation (A.4) vanishes then for the following η±IJ
{

η+
12 , η

+
13 , η

+
14 , η

−
23 , η

−
24 , η

−
34

}

. (A.6)

The 1/3 BPS vortex has

C1 =
β1√
z
, C2 =

β2√
z̄
. (A.7)

Clearly all the supercharges broken by the 1/2 BPS vortex are still broken, and there

are now similar conditions stemming from C2, with the opposite helicity. Together (A.4)

vanishes for
{

η+
13 , η

+
14 , η

−
23 , η

−
24

}

. (A.8)

The analysis for the 1/6 BPS vortex goes along the same lines, giving two preserved

conformal supersymmetries.

B Spherical harmonics and Chiral primary operators

In this appendix we study the spherical harmonics on S7/Zk and in particular those invari-

ant under an SU(3) subgroup of the SU(4) symmetry group. These spherical harmonics

will allow us to construct the chiral primary operators which couple to the 1/2 BPS vortex

loop operators VC and the supergravity modes dual to them.

The spherical harmonics of S7 which transform in the SO(8) representation with

Dynkin label [J, 0, 0, 0] are homogeneous polynomials of degree J in the complex coor-

dinates (3.6)

w1 = sin
ϑ1

2
eiξ1 , w3 = cos

ϑ1

2
cos

ϑ2

2
sin

ϑ3

2
eiξ3 ,

w2 = cos
ϑ1

2
sin

ϑ2

2
eiξ2 , w4 = cos

ϑ1

2
cos

ϑ2

2
cos

ϑ3

2
eiξ4 ,

(B.1)
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and their complex conjugates. These spherical harmonics are eigenvectors of the S7 Lapla-

cian with eigenvalue −J(J + 6).

Explicitly, we write the spherical harmonics as

Y A ≡ C(A)J1···J∆−

I1···I∆+
wI1 · · ·wI∆+ w̄J1 · · · w̄J∆−

(B.2)

where J = ∆+ + ∆− and C(A)J1···J∆−

I1···I∆+
is a totally symmetric tensor in I1 · · · I∆+ and

J1 · · · J∆− and traceless, i.e.

C(A)J1···J∆−

I1···I∆+
δ
Iq
Jr

= 0 (B.3)

for any 1 ≤ q ≤ ∆+ and any 1 ≤ r ≤ ∆−. They are normalized as

C(A)J1···J∆−

I1···I∆+
C̄(B)I1···I∆+

J1···J∆−
= δAB . (B.4)

Zk acts on all the wI in (B.1) by wI → e2πi/kwI , thus the S7 spherical harmonics which

survive the Zk orbifold are those where the difference between the number of holomorphic

and anti-homorphic coordinates is an integer multiple of k, so ∆+ − ∆− = pk. We get

∆+ = ∆ +
pk

2
, ∆− = ∆ − pk

2
, ∆ =

J

2
. (B.5)

The parametrization (B.1) makes manifest the embedding SU(4) × U(1)B ⊂ SO(8),

where 8v → 41 ⊕ 4̄−1. We further consider the decomposition SU(3) × U(1)R ⊂ SU(4),

where 4 → 11 ⊕ 3−1/3 and would like to focus now on spherical harmonics invariant under

this SU(3) subgroup. The SU(3) invariant harmonics, transforming in the [∆+, 0,∆−]

representation of SU(4), are functions of w1, w̄1 and |w2|2 + |w3|2 + |w4|2 only. In terms

of the angular coordinates in (B.1), we have that the SU(3) invariant spherical harmonics

may depend only on ϑ1 and ξ1
In order to make manifest the U(1)B and U(1)R symmetries one may redefine the

angles in (B.1) as

ξ1 =
ζ

k
+ ϕ1 , ξ2 =

ζ

k
− ϕ1

3
+ ϕ2 , ξ3 =

ζ

k
− ϕ1

3
− ϕ2 + ϕ3 , ξ4 =

ζ

k
− ϕ1

3
− ϕ3 . (B.6)

The ζ coordinate parametrizes the Hopf fiber of the S7, so U(1)B is generated by ∂ζ
while U(1)R is generated by ∂ϕ1 . The Killing vectors ∂ϕ2 and ∂ϕ3 generate the Cartan

subalgebra of SU(3). As mentioned above, the U(1)B charge of the spherical harmonic is

the number of holomorphic coordinates minus the number of antiholomorphic coordinates

in the harmonic. The spherical harmonics with zero U(1)B charge correspond to states

that do not carry any angular momentum around the “M-theory circle” and remain light

in weakly coupled Type IIA string theory.

For practical purposes it is better to continue employing ϑ1 and ξ1, and write the S7

Laplacian with SU(3) invariance as

(

4

sin ϑ1
2 cos5 ϑ1

2

∂ϑ1 sin
ϑ1

2
cos5

ϑ1

2
∂ϑ1 +

1

sin2 ϑ1
2

∂2
ξ1

)

Y∆,p = −J(J + 6)Y∆,p . (B.7)
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This is solved by

Y∆,p(ϑ1, ξ1) = N∆,p sinpk
ϑ1

2
eipkξ1 P

(pk,2)

∆− pk
2

(cos ϑ1) , (B.8)

where ∆ = J/2 ≥ |pk|/2. P (α,β)
n are Jacobi polynomials, which we may also write in terms

of hypergeometric functions as

P
(pk,2)
∆−

(cos ϑ1) =
∆+!

∆−!(pk)!
2F1

(

∆+ + 3, −∆− ; 1 + pk ; sin2 ϑ1

2

)

. (B.9)

The normalization constant N∆,p in (B.8) is fixed such that the normalization of Y A

agrees with that which is determined from (B.4) to be
∫

S7

Y AȲ B = 2π4 ∆−!∆+!

(2∆ + 3)!
δAB (B.10)

where the volume of the unit radius S7 is Ω7 = π4/3 and on S7/Zk the right-hand side

gets a factor of 1/k.

To prove this we first use the identity

∫

S7

ej·w̄+j̄·w = 2π4
∞
∑

m=0

(j · j̄)m
m!(m+ 3)!

. (B.11)

Differentiating m times with respect to j and m times with respect to j̄ and setting |j| = 0,

we get
∫

S7

wI1 · · ·wImw̄J1 · · · w̄Jm =
2π4

(m+ 3)!

∑

σ∈Sm

δI1Jσ(1)
· · · δImJσ(m)

, (B.12)

where the sum is over all permutations. Finally we plug this formula into the left hand side

of (B.10), and notice that of the (2∆)! possible permutations, only ∆−!∆+! give a non-zero

contraction between the two C(A) tensors, and we get the right-hand side of (B.10).

The Jacobi polynomials are conventionally normalized as

∫

S7

[

sinpk
ϑ1

2
P

(pk,2)
∆−

(cos ϑ1)

]2

=
π4

(2∆ + 3)

∆+!(∆− + 2)!

∆−!(∆+ + 2)!
. (B.13)

Together with equation (B.10) we find that the SU(3) invariant spherical harmonics that

gives rise to unit normalized operators are given by

Y∆,p(ϑ1, ξ1) =

√

2 (∆+ + 2)!

(2∆ + 2)! (∆− + 2)!
(∆−)! sinpk

ϑ1

2
eipkξ1 P

(pk,2)
∆−

(cos ϑ1) . (B.14)

The first few properly normalized harmonics with p = 0 are given by

Y1,0(ϑ1) =
1

2
√

3
(−1 + 2 cos ϑ1) ,

Y2,0(ϑ1) =
1

12
√

10

(

−1 − 10 cos ϑ1 + 15 cos2 ϑ1

)

,

Y3,0(ϑ1) =
1

16
√

35

(

3 − 6 cos ϑ1 − 21 cos2 ϑ1 + 28 cos3 ϑ
)

.

(B.15)
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These spherical harmonics can be used to write down the SU(3) invariant chiral primary

operators. As mentioned in section 2, the unit normalized chiral primary operators with

vanishing U(1)B charge are given by (2.70)

OA
∆,0 =

(4π)∆

λ∆
√

∆
C(A)J1···J∆

I1···I∆
Tr
(

CI1C†
J1

· · ·CI∆C†
J∆

)

, (B.16)

Using the embedding coordinates in (B.1), the harmonics in (B.15) give the first few unit

normalized SU(3) × U(1)B invariant operators22

O1,0 =
2π√
3λ

Tr
[

CIC†
I − 4C1C†

1

]

,

O2,0 =
8π2

3
√

5λ2
Tr
[

(CIC†
I )

2 − 10CIC†
I C

1C†
1 + 15(C1C†

1)
2
]

, (B.17)

O3,0 =
16π3

3
√

105λ3
Tr
[

(CIC†
I )

3 − 18(CIC†
I )

2 (C1C†
1) + 63(CIC†

I ) (C1C†
1)

2 − 56(C1C†
1)

3
]

.

While it is no harder to write down the spherical harmonics with non-zero U(1)B
charge pk, the corresponding gauge invariant local operators are rather subtle objects.

The analog of (B.16) for non-zero p will have a different number of CI and C†
I fields and

cannot be trivially traced over. The rigorous definition of the corresponding operator

requires us to include an ’t Hooft operator carrying p units of magnetic flux. This object

transforms in the pk symmetric product of the bi-fundamental of U(N) × U(N) and can

soak up the color indices on the extra pk fields. Unfortunately, it is not known how to

write them down in general.

Still, given that all our classical configurations are made of commuting matrices and

that the gauge symmetry is broken — and being a bit cavalier — we can try to write down

the relevant operators. For example, in the case when ∆ = pk/2, using that P
(α,β)
0 = 1 the

properly normalized spherical harmonics are

Y pk
2
,p
(ϑ1, ξ1) = sinpk

ϑ1

2
eipkξ1 . (B.18)

The operators with ∆ = pk/2 are then of the general form

O pk
2
,p
∼ (4π)pk/2

λpk/2
(C1)pk . (B.19)

C String theory description

For completeness we present here the M2-brane solution of section 3.2 also in Type IIA

string theory language where it is replaced by a D2-brane. In this case the string back-

ground is given by

ds2string =
R3

4k

(

ds2AdS4
+ 4ds2

CP3

)

. (C.1)

22Note that the index I sums over all directions, including 1, and all monomials should be symmetrized.
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For the AdS4 metric we take the same metric as before (3.2). We describe CP
3 = S7/S1

by taking the metric (3.8), isolating the overall phase (3.6)

ζ =
1

4
(ξ1 + ξ2 + ξ3 + ξ4) , (C.2)

and defining three other phases as differences of the ξi. Then the metric on S7 is realized

as a Hopf fiber over CP
3

ds2S7 = ds2
CP3 + (dζ + ω)2 , (C.3)

where dω is the Kähler form on CP
3.

In addition to the metric, the supergravity background has the dilaton, and the two-

form and four-form field strengths from the Ramond-Ramond sector

e2Φ =
R3

k3
, F4 =

3

8
R3 ΩAdS4 , F2 = k dω . (C.4)

Here ΩAdS4 is the volume form on AdS4. As in the M-theory description, for the three-form

potential we take

C3 =
1

8
R3 cosh3 uΩAdS2 ∧ dφ . (C.5)

This string theory description is valid in the regime

λ≫ 1 , k5 ≫ N . (C.6)

The M2-brane solutions are contained within an S3/Zk ⊂ S7/Zk and likewise for the

D2-branes we take w3 = w4 = 0 which gives a CP
1 ⊂ CP

3. Parametrizing it by

w1 = sin
ϑ1

2
e−i

ϕ
2 , w1 = cos

ϑ1

2
ei

ϕ
2 , (C.7)

gives

ds2
CP1 =

1

4

(

dϑ2
1 + sin2 ϑ1 dϕ

2
)

, C1 =
k

2
(cos ϑ1 ∓ 1)dϕ , (C.8)

where F2 = dC1 and the choice of sign in C1 corresponds to two different gauges with the

Dirac string at oposite poles. Note that because of the factor of 1/4, the radius of AdS4

and of S2 are equal.

Like the M2-brane, the D2-brane will occupy an AdS2 × S1 ⊂ AdS4 where we may

parameterize AdS2 by either (3.3) or (3.4) and the calculation goes through identically.

The S1 ⊂ AdS4 is parametrized by φ and we allow the angle ϕ on CP
1 to vary with φ.

In principle u and ϑ1 should be functions on the world-volume, though from symmetry

arguments we expect them to be constants.

The action includes the Dirac-Born-Infeld piece and the Wess-Zumino coupling

SD2 = TD2

∫

e−Φ
√

det(g + 2πα′F ) − TD2

∫

[

P [C3] + 2πiα′P [C1] ∧ F
]

. (C.9)

Here g is the induced metric on the world-volume and F is the gauge field. The vortex

may carry electric flux, which by symmetry is proportional to the volume form on AdS2,

F = E ΩAdS2 . Being an electric field in a theory with Euclidean signature, E is imaginary.
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P [C3] is the pullback of the Ramond-Ramond three-form potential and P [C1] that of the

one-form. The last term comes with an i again due to the fact that we are in Euclidean

signature.

Plugging our ansatz in we find

SD2 =
TD2R

3

8

∫

ΩAdS2 dφ

[

√

(cosh4 u+ τ2E2)(sinh2 u+ ϕ̇2 sin2 ϑ1)

− cosh3 u− iϕ̇ τE(cos ϑ1 − 1)

]

,

(C.10)

with τ = 8πk/R3 =
√

2/λ (setting α′ = 1) and in our conventions TD2 = 1/(4π2).

The equation of motion for u leads to the two possible values of E

1. iτE = cosh u

√

1 − ϕ̇2 sin2 ϑ1 , (C.11)

2. iτE = cosh u

√

4(1 − ϕ̇2 sin2 ϑ1) − 3 cosh2 u . (C.12)

Only the first of these two solutions seems to be related to the vortex loop operators and

is the analog of (3.14).

Concentrating on (C.11), the ϑ1 equation of motion again has two solutions. The first

one has ϕ̇ = 0, in complete analogy with (3.16). This solution preserves 12 supercharges

and is the string theory dual of the 1/2 BPS vortex loop.

The other solution has

ϕ̇ = ±1 , iτE = ∓ cosh u cos ϑ1 . (C.13)

This is the analog of the M2-brane solution (3.17) and preserves eight supercharges.

Note that for both the 1/2 BPS and 1/3 BPS solutions the values of u and of ϑ1 are

free parameters, not constrained by the equations of motion.

The gauge field is a cyclic variable and the flux through the brane is proportional to

the conjugate momentum

p = −2πi
δL
δF

= ±2π2kTD2 = ±k
2
. (C.14)

This flux should be integer quantized, which happens only for even k. This is the string

theory manifestation of the fact that a single vortex loop operator is not well defined for

odd k.23

To summarize, the most general D2-brane solution has the following parameters: u,

ϑ1, ϕ0, where ϕ = ϕ0 ±φ and since the world-volume has a compact direction we can have

a holonomy for the U(1) gauge field around it Aφ. They are related to the parameters of

the 1/3 BPS vortex loop operator by (3.27)

sinh2 u =
|β1|2 + |β2|2

2π2λ
, tan

ϑ1

2
e−iϕ0 =

β1

β2
, Aφ = α . (C.15)

23Note also that due to the existence of ’t Hooft operators, the electric flux is defined only modulo k,

which is manifested here in the two gauge choices for C1 (C.8).
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Finally we evaluate the action on this classical solution. As is explained in [24], the

action as it stands will not give the correct classical value, since it is a functional of the

electric field. The action should be a functional of the conserved quantity which gives a

good variational problem. This is the flux conjugate to the gauge field, namely p. We

therefore have to perform a Legendre transform

SL.T. = S − i

∫

p

2π
F . (C.16)

For the solution of interest (C.11), the action vanishes.

D Supersymmetry of brane solution

In this appendix we show that the M2-brane solutions presented in section 3 indeed preserve

1/2 and 1/3 of the supercharges.

D.1 Killing spinors

To check the supersymmetries preserved by the brane solution we need an explicit form of

the Killing spinors on AdS4 × S7/Zk. For the AdS4 part we take (3.2) but with the AdS2

factor being global Lorentzian AdS2

ds2AdS4
= du2 + cosh2 u

(

dρ2 − cosh2 ρ dt2
)

+ sinh2 u dφ2 . (D.1)

For S7 we take (3.8).

We choose the elfbeine to be

e0 =
R

2
cosh u cosh ρ dt , e1 =

R

2
coshu dρ , e2 =

R

2
du , e3 =

R

2
sinhu dφ ,

e4 =
R

2
dϑ1 , e5 =

R

2
cos

ϑ1

2
dϑ2 , e6 =

R

2
cos

ϑ1

2
cos

ϑ2

2
dϑ3 ,

e7 = R sin
ϑ1

2
dξ1 , e8 = R cos

ϑ1

2
sin

ϑ2

2
dξ2 , (D.2)

e9 = R cos
ϑ1

2
cos

ϑ2

2
sin

ϑ3

2
dξ3 , e♮ = R cos

ϑ1

2
cos

ϑ2

2
cos

ϑ3

2
dξ4 .

The Killing spinor equation in this background can be written as

DM ǫ =
1

2
γ̂γM ǫ (D.3)

where the index M runs over all 11 coordinates, and γ̂ = γ0123. Note that small γ have

tangent-space indices while capital Γ carry curved-space indices.

The Killing spinors that solve this equation are [9, 52]

e
ϑ1
4
γ̂γ4e

ϑ2
4
γ̂γ5e

ϑ3
4
γ̂γ6e

1
2
(ξ1γ47+ξ2γ58+ξ3γ69+ξ4γ̂γ♮)e

u
2
γ̂γ2e

ρ
2
γ̂γ1e

t
2
γ̂γ0e

φ
2
γ23ǫ0 = Mǫ0 (D.4)

ǫ0 is a constant 32-component spinor and the Dirac matrices were chosen such that

γ0123456789♮ = 1. A similar calculation in a different coordinate system was done in [52].
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Recall that the angles ξi have period 2π up to the Zk orbifold, which acts on all by

ξi → ξi + 2π/k. We have to check whether the Killing spinors are invariant under this

action and survive the orbifold projection. To do this it is convenient to write the spinor

ǫ0 in a basis which diagonalizes

iγ47ǫ0 = s1ǫ0 , iγ58ǫ0 = s2ǫ0 , iγ69ǫ0 = s3ǫ0 , iγ̂γ♮ǫ0 = s4ǫ0 . (D.5)

All the si take values ±1 and by our conventions on the product of all the Dirac matrices,

the number of negative eigenvalues is even. Now consider the orbifold action, the Killing

spinors transform as

Mǫ0 → Mei
π
k
(s1+s2+s3+s4)ǫ0 . (D.6)

This transformation is a symmetry of the Killing spinor when two of the si eigenvalues

are positive and two negative and not when they all have the same sign (unless k = 1 or

k = 2). The allowed values of the si are therefore

(s1, s2, s3, s4) ∈
{

(+,+,−,−), (+,−,+,−), (+,−,−,+),

(−,+,+,−), (−,+,−,+), (−,−,+,+)

}

. (D.7)

Each configuration represents four supercharges, so the orbifolding breaks 1/4 of the su-

percharges (except for k = 1, 2) and leaves 24 unbroken supersymmetries.

D.2 Projector equation

The supersymmetry projector equation associated with an M2-brane with world-volume

coordinates t, ρ and φ is given by

1

LNG
∂tX

M ∂ρX
N ∂φX

L ΓMNL ǫ = ǫ , (D.8)

where M,N,L are target-space coordinates and LNG is the Langrangian of the membrane,

without the Wess-Zumino term.

The M2-brane ansatz involved motion on a subspace of S7/Zk, which for convenience

we take here to be that with ϑ1 = ϑ2 = 0 (instead of ϑ2 = π as in section 3.2). The

remaining coordinates can be defined as ζ = k
2 (ξ3 + ξ4) and ϕ = ξ3 − ξ4, which were both

functions of φ, and ϑ = ϑ3 is a constant. The projector equation becomes

γ01

(

sinhu γ3 + γ♮

(

2

k
ζ̇ e−

ϑ
2
γ9♮ − ϕ̇ e

ϑ
2
γ9♮

))

ǫ = cosh u ǫ . (D.9)

Using the relations

M−1 γ01♮ e
±ϑ

2
γ9♮ M = AB−1 e−

ϑ
2
(γ̂γ6±γ9♮)B γ01♮ ,

A ≡ M−1 e−uγ̂γ2 M = cosh u− sinhuM−1 γ013 M ,

B ≡ e
1
2
(ξ3γ69+ξ4γ̂γ♮) ,

(D.10)

the projector equation multiplied from the left by M−1 can be repackaged as

A

(

1 −B−1

(

2

k
ζ̇ e−

ϑ
2
(γ̂γ6−γ9♮) − ϕ̇ e−

ϑ
2
(γ̂γ6+γ9♮)

)

B γ01♮

)

ǫ0 = 0 . (D.11)
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In the case when ϑ = 0 and ϕ̇ = 0, this reduces to

A

(

1 − 2

k
ζ̇ γ01♮

)

ǫ0 = 0 . (D.12)

This has solutions when ζ̇ = ±k/2, which indeed is the classical solution (3.16). This is a

single condition on ǫ0. Furthermore, note that the projector equation (D.12) commutes with

the orbifolding condition (D.5), (D.7) so for k = 1, 2 there are 16 preserved supercharges,

while for general k there are 12. In all cases this is 1/2 BPS.

The second solution (3.17) has ϕ̇ = 1 and a constant ζ, which for simplicity we take

to be ζ = 0. In that case (D.11) gives

A
(

1 + e−
ϕ
4
(γ69−γ̂γ♮) e−

ϑ
2
(γ̂γ6+γ9♮) e

ϕ
4
(γ69−γ̂γ♮) γ01♮

)

ǫ0 = 0 , (D.13)

which can be rewritten as
1

2
A
(

2 + (γ01♮ − γ2369) +
(

cos ϑ+ sinϑ γ9♮ e
ϕ
2
(γ69−γ̂γ♮)

)

(γ01♮ + γ2369)
)

ǫ0 = 0 . (D.14)

One way of solving this equation is by imposing the two conditions

γ2369 ǫ0 = −γ01♮ ǫ0 = ǫ0 . (D.15)

Note that as before we have to take a specific eigenvalue for γ01♮ (here with the opposite

sign) and now also for γ2369, which relates the motion along the ϕ circle with φ. The two

conditions together give

γ69 ǫ0 = −γ̂γ♮ ǫ0 . (D.16)

This is represented in the basis (D.5) as s3 = −s4. Of the six possible combinations of

signs in (D.7), four are allowed

(s1, s2, s3, s4) ∈
{

(+,−,+,−) , (+,−,−,+) , (−,+,+,−) , (−,+,−,+)
}

. (D.17)

Each of the sign combinations represents four supercharges, but the extra condition on γ01♮

in (D.15), reduces the counting by a half. Therefore this M2-brane solution preserves eight

supercharges, i.e. it is 1/3 BPS.

Let us look for other solutions to (D.14), where we impose the complementary condition

γ69 ǫ0 = γ̂γ♮ ǫ0 . (D.18)

Equation (D.14) now becomes
(

1 + eϑγ9♮ γ01♮

)

ǫ0 = 0 . (D.19)

These two equations commute, so it would seem that this brane solution has more than

eight preserved supercharges. Note however that unless ϑ = 0, equation (D.19) does not

commute with γ69 and γ̂γ♮, so the solutions will mix the states with eigenvlues

(s1, s2, s3, s4) ∈
{

(+,+,+,+) , (+,+,−,−)
}

, (D.20)

and likewise the two possibilities with s1 = s2 = −1. Therefore equation (D.19) has no

solutions (for ϑ 6= 0) on the subspace of states (D.7) preserved by the orbifold, for k > 2.

For k = 1 and k = 2 the states with all positive or all negative si are allowed and there

are eight more solutions to the projector equation. Together with the above there will be

a total of 16 supercharges, so for k = 1, 2 it is 1/2 BPS, just like the solution with ϑ = 0.
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E Supergravity modes on AdS4 × S7/Zk

In this appendix we present the necessary ingredients of the fluctuation spectrum of eleven

dimensional supergravity around the AdS4 ×S7/Zk vacuum that are needed for the calcu-

lation of the correlation functions of the vortex loop operators and chiral primary operators

in the probe approximation in supergravity, as performed in section 3.4.

The required formalism of the fluctuations around the AdS4 × S7 supergravity back-

ground were developed in [25–27] of which we follow mainly [27] with some necessary

modifications.

Using late greek letters µ, ν, · · · for the AdS4 portion of the metric and early greek

letters α, β, · · · for the S7 we expand the metric g̃ and three-form C̃ about the AdS4 × S7

background g and C in terms of the fluctuations modes hµν , Hµν , hαβ , π, δCµνρ and b as

g̃µν = gµν + hµν , g̃αβ = gαβ + hαβ ,

hµν = Hµν −
1

2
gµνπ , π ≡ gαβhαβ , Hµ

µ =
9

7
π , (E.1)

C̃µνρ = Cµνρ + δCµνρ ≃ Cµνρ − εµνρλ∇λb .

The fluctuations of the three-form field Cµνρ were not provided in [27]. Rather, the field b

was used to parameterize the fluctuations of the dual six-form. Below, in appendix E.1 we

derive the expression for the fluctuation of the three-form field given above by application

of the constraint relating the three-form and six-form fields of 11-dimensional supergravity

and using the approximation (E.5).

The fields are expanded in a Kaluza-Klein expansion on the S7, giving for example

π(x, y) =
∑

A

πA(x)Y A(y), b(x, y) =
∑

A

bA(x)Y A(y) (E.2)

where x are coordinates on AdS4 and y are those on an S7 of radius 2, so now the equations

like (B.7) are rescaled by 1/4

∇α∇αY
A = −1

4
J(J + 6)Y A . (E.3)

We consider only the modes that survive the Zk projection and whose properties we studied

in appendix B. They are labeled by two quantum numbers ∆± or (J, p) such that J =

∆+ + ∆− = 2∆ and ∆+ − ∆− = pk. Accounting for the radius of the sphere and the

orbifold projection, they are normalized by (B.10)

∫

S7/Zk

Y AȲ B =
28π4

k

∆−!∆+!

(2∆ + 3)!
δAB . (E.4)

The equations of motion for the πA and bA fields on AdS4 are mixed and can be diagonalized

into two mass eigenstates, of which we concern ourselves only with the lighter24 one sA(x)

24Note that we scaled the form-fields by 1/
√

2 compared to [27] in order to be consistent with the standard

Wess-Zumino coupling of the M2 brane used here.
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with J ≥ 2 and mass m2
sA = J(J − 6)/4. Ignoring the contribution from the heavier field

we may write the modes πA, bA and HA
µν in terms of sA as

πA(x) ≃ 7J

3
sA(x) , bA(x) ≃ −2sA(x) ,

HA
µν(x) ≃

4

(J + 2)

[

∇µ∇ν +
J(J + 6)

8
gµν

]

sA(x).
(E.5)

Finally we note that as in equation (20) of [26], the non-trace piece of the S7 metric

fluctuations are heavier than sA(x) and so we take

hαβ ≃ 1

7
gαβ π(x). (E.6)

The quadratic action for the sA(x) field is given by [27]

Squad. =
1

4κ2

∑

A

28π4

k

∆−!∆+!

(2∆ + 3)!

2(J + 3)J(J − 1)

(J + 2)

×
∫

AdS4

d4x
√

det gµν

[

−1

2
∇µsA∇µs

A − 1

2
m2
sAs

AsA
]

,

(E.7)

where in units where lp = 1

1

4κ2
=

1

(2π)8

(

R

2

)9

. (E.8)

From this the bulk-to-bulk propagator may be derived (see for example [30])

〈

sA(x) sB(x′)
〉

=
δJBΓ(∆)

2π3/2Γ(∆ − 1/2)

k κ2(2∆ + 2)! (∆ + 1)

27π4∆−!∆+!∆ (2∆ − 1)

×W∆
2F1(∆,∆ − 1 ; 2∆ − 2 ;−4W )

(E.9)

where W is the geodesic distance between the two points. For AdS4 parameterized by

ds2 = (dy2 + d~x2)/y2, it is given by

W =
yy′

(y − y′)2 + (~x− ~x′)2
. (E.10)

The bulk-to-boundary propagator is then obtained in the usual way by taking y → 0

while scaling the propagator by 1/y∆. The correct normalization corresponding to unit

normalized operators in the dual conformal field theory is the square-root of that for the

bulk-to-bulk propagator [30]. We therefore have that the bulk-to-boundary propagator is

given by

G = cJ
y′∆

(

(y − y′)2 + (~x− ~x′)2
)∆
, (E.11)

where

c2J =
k κ2

28π11/2

(∆ − 1)! (2∆ + 2)! (∆ + 1)

Γ(∆ − 1/2)∆−!∆+!∆ (2∆ − 1)
=

22∆+7π2k

R9

(∆ + 1)!2 (2∆ + 1)

∆2 ∆−!∆+!
. (E.12)

To write the propagator in the coordinate system (3.2), (3.3), we use polar coordinates

ds2 = dt2 + dr2 + r2 dφ2 on R
3 and substitute in equation (E.11) y = z/ cosh u and

r = z tanhu. This gives the propagator (3.34) used in section 3.4.
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E.1 Three-form fluctuation

In [27] the fluctuations of the three-form field C3µνρ which are required for our current

analysis were not studied. Instead the fluctuations of the dual six-form were represented

in terms of a field b

δC6 = εα1···α6β ∇βb . (E.13)

We derive here the third line of (E.1), by using the constraint relating C6 and C3 (see [29]

for a similar calculation in the context of AdS7 × S4)

F4 + ⋆H7 = 0 , F4 ≡ dC3 , H7 ≡ dC6 +
1

2
C3 ∧ F4 , (E.14)

where ⋆ indicates the Hodge dual. The H7 field is proportional to the volume form on S7

H7 = 3 εα1···α7 (E.15)

The fluctuations of H7 can be written as

δH7 = d(δC6) = εα1···α6β∇β∇µb+ εα1···α7∇β∇βb . (E.16)

The fluctuations of F4 are then given by (E.14)

δF4 = −δ(⋆H7) . (E.17)

This will include the Hodge dual of δH7 (E.16) and in addition also the variation of the

measure factor in the Hodge duality acting on H7. Since H7 has all its indices in the S7

directions, and its dual has all AdS4 directions, the epsilon tensor relating the two scales

like
√

det(gµν)/det(gαβ). Its variation is

δεα1···α7
µ1···µ4 =

1

2

(

hµµ − hαα
)

εα1···α7
µ1···µ4 = −6

7
π εα1···α7

µ1···µ4 . (E.18)

Together we find (note that the Hodge dual changes the sign of the second term)

δF4 =

(

18

7
π −∇β∇βb

)

εµ1···µ4 + εµ1µ2µ3ν ∇ν∇αb . (E.19)

In the approximation which identifies b with −2s (E.5), the term in parenthesis in

(E.19) can be expressed as
18

7
π −∇β∇βb ≃ ∇ν∇νb . (E.20)

Now we can integrate δF4 to find

δCµ1µ2µ3 ≃ −εµ1µ2µ3ν ∇νb . (E.21)
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